
DISTRIBUTED CONSTRAINT OPTIMIZATION:
PRIVACY GUARANTEES AND STOCHASTIC UNCERTAINTY

Thèse n. 5197 2011
présentée le 29 septembre 2011
à la Faculté Informatique et Communications
Laboratoire d’Intelligence Artificielle
programme doctoral en Informatique et Communications
École Polytechnique Fédérale de Lausanne

pour l’obtention du grade de Docteur ès Sciences
par

Thomas Léauté

acceptée sur proposition du jury :

Prof. Karl Aberer, président du jury
Prof. Boi Faltings, directeur de thèse
Prof. Jean-Pierre Hubaux, rapporteur
Prof. Makoto Yokoo, rapporteur
Dr. Juan A. Rodríguez-Aguilar, rapporteur

Lausanne, EPFL, 2011

— Ludwig van Beethoven (1770–1827)

To Julie. . .

Acknowledgements

I would like to start by expressing my warm acknowledgments to my thesis director,
Prof. Boi Faltings, for his research supervision over the last five years, his support, and
his very accommodating management style. My acknowledgements extend to the
members of my thesis jury, for their expert and valuable feedback. I would also like to
thank the two successive lab assistants I have got the chance to meet: Marie Decrauzat
for her admirable dedication, and Sylvie Thomet for her support and joie de vivre.

Next, I would like to attempt to write a few meaningful(?) words about each of the
co-workers at the Artificial Intelligence Lab whom I have got the pleasure to work with.
In alphabetical order of their first names: Adrian Petcu, for his monumental work upon
which I built this thesis, for setting an unachievable precedent for productivity, and for
being his invaluable self; Brammert Ottens, for his major contribution to FRODO and
our fruitful discussions; Christos Dimitrakakis, whom I have not had the time to get
to know better yet; David Portabella, for his friendliness; Florent Garcin, for being his
invaluable self too, and making a decent replacement for Adrian; Immanuel Trummer,
for having such an unusual number of m’s in his name (I only just noticed); Jason Li,
for his cute kids; Jean-Cedric Chappelier, for his occasional advice; Li Pu, for heroically
surviving Florent; Ludek Cigler, for enriching my Google results with Harvard-hosted
presentations; Marita Ailomaa, for her friendliness, and her long-missed contribution
to the female-to-male ratio in the lab; Martin Rajman, for his critical thinking; Martin
Veselý, for his support as system admin; Michael Schumacher, for his collaboration on
the A.I. course; Mirek Melichar, whom I did not get the chance to know so well; Paolo
Viappiani, for recommending me places in Toronto; Radek Szymanek, for his advice
on redesigning FRODO, and for sharing my office (and effectively, part of my life) for so
many years; Radu Jurca, for his inspiring thoughts about what one should do with one’s
life; Vincent Schickel, for his priceless help with computers and with the A.I. course;
and Walter Binder, for allowing me to share his office for a very short period of time,
and for putting an end to the longest sentence of this thesis.

During these five years of work towards my PhD, I have spent a measurable amount
of time developing the FRODO software platform, which really was a collaborative
effort that involved a certain number of people whom I would like to thank for their

v

Acknowledgements

contributions. Let me first mention the students I supervised or co-supervised, again
in alphabetical order of their first names: Achraf Tangui, Alexandra Olteanu, Andreas
Schädeli, Arnaud Jutzeler, Cécile Grometto, Éric Zbinden (with a special mention for
his remarkable work on P-DPOP and P2-DPOP), Jonas Helfer, Nacereddine Ouaret, and
Stéphane Rabie. As FRODO was getting more traction, we also received a number of
contributions from external users; this includes most noticeably Xavier Olive, and Prof.
George Vouros and Sokratis Vavilis. I would also like to thank the following people for
their constructive feedback: Abhishek Singh, Fredrik Heintz, Kathryn Macarthur, Roie
Zivan, Sankalp Khanna, and Prof. Youssef Hamadi.

My acknowledgements also go to the researchers at EPFL and outside with whom I
have had occasional enriching interactions; this includes my collaborators at the Nokia
Research Center in Lausanne, Gian Paolo Perrucci and Imad Aad.

Almost last, but not almost not least, I would like to sincerely thank Julie for her love,
her patience, and for tolerating my too often work-focused mindset. This also applies
to the other members of my close family, whom I did not get to see so often.

Finally, I would like to apologize to anyone I might have unforgivably omitted.

Lausanne, August 20, 2011 T. L.

vi

Abstract

Distributed Constraint Satisfaction (DisCSP) and Distributed Constraint Optimization
(DCOP) are formal frameworks that can be used to model a variety of problems in
which multiple decision-makers cooperate towards a common goal: from computing
an equilibrium of a game, to vehicle routing problems, to combinatorial auctions.
In this thesis, we independently address two important issues in such multi-agent
problems: 1) how to provide strong guarantees on the protection of the privacy of the
participants, and 2) how to anticipate future, uncontrollable events.

On the privacy front, our contributions depart from previous work in two ways. First,
we consider not only constraint privacy (the agents’ private costs) and decision privacy
(keeping the complete solution secret), but also two other types of privacy that have
been largely overlooked in the literature: agent privacy, which has to do with protecting
the identities of the participants, and topology privacy, which covers information
about the agents’ co-dependencies. Second, while previous work focused mainly on
quantitatively measuring and reducing privacy loss, our algorithms provide stronger,
qualitative guarantees on what information will remain secret. Our experiments show
that it is possible to provide such privacy guarantees, while still scaling to much larger
problems than the previous state of the art.

When it comes to reasoning under uncertainty, we propose an extension to the DCOP
framework, called DCOP under Stochastic Uncertainty (StochDCOP), which includes
uncontrollable, random variables with known probability distributions that model
uncertain, future events. The problem becomes one of making “optimal" offline
decisions, before the true values of the random variables can be observed. We consider
three possible concepts of optimality: minimizing the expected cost, minimizing the
worst-case cost, or maximizing the probability of a-posteriori optimality. We propose a
new family of StochDCOP algorithms, exploring the tradeoffs between solution quality,
computational and message complexity, and privacy. In particular, we show how
discovering and reasoning about co-dependencies on common random variables can
yield higher-quality solutions.

Keywords: Distributed Constraint Satisfaction (DisCSP), Distributed Constraint Opti-
mization (DCOP), Privacy, Uncertainty, P-DPOP, E[DPOP], FRODO

vii

Résumé

La satisfaction distribuée sous contraintes (DisCSP) et l’optimisation distribuée sous
contraintes (DCOP) sont des formalismes qui peuvent être utilisés pour modéliser une
large gamme de problèmes dans lesquels plusieurs décideurs coopèrent pour atteindre
un objectif commun : du calcul d’un équilibre d’un jeu stratégique, au routage de
véhicules, en passant par les enchères combinatoires. Dans cette thèse, nous adressons
indépendamment deux problématiques importantes dans de tels systèmes multi-
agents : 1) comment apporter des garanties quant à la protection de la confidentialité
des participants, et 2) comment anticiper des événements futurs incontrôlables.

Sur le front de la confidentialité, nos contributions se démarquent des précédents
travaux de deux points de vue. Premièrement, nous considérons non seulement la
confidentialité des contraintes (c’est-à-dire, les coûts et préférences privés des agents)
et la confidentialité décisionnelle (garder secrète la solution complète), mais aussi
deux autres types de confidentialité qui ont été généralement ignorés dans la lit-
térature : la confidentialité des agents, qui implique la protection des identités des
participants, et la confidentialité topologique, qui couvre les informations concernant
les co-dépendances entre les agents. Deuxièmement, alors que les précédents travaux
se sont concentrés principalement sur la mesure et la réduction des pertes de confi-
dentialité, nos algorithmes apportent des garanties qualitatives plus fortes en ce qui
concerne les informations qui restent secrètes. Nos expériences prouvent qu’il est
possible d’apporter de telles garanties, tout en rendant aussi possible la résolution de
problèmes beaucoup plus grands que précédemment.

En ce qui concerne l’incertitude, nous proposons une extension du formalisme DCOP,
appelée DCOP avec incertitude stochastique (StochDCOP), qui inclut des variables
aléatoires incontrôlables, dont les distributions probabilistes sont connues, et qui
modélisent des événement futurs incertains. Le problème consiste alors à prendre à
l’avance des décisions “optimales", avant de pouvoir observer les valeurs effectives
des variables aléatoires. Nous considérons trois concepts possibles d’optimalité : la
minimisation de l’espérance du coût, la minimisation du pire coût, et la maximisation
de la probabilité d’optimalité a posteriori. Nous proposons une nouvelle famille d’al-
gorithmes de StochDCOP, qui explore les compromis entre la qualité de la solution, la

ix

Acknowledgements

complexité de calcul et de communication, et la confidentialité. En particulier, nous
montrons comment découvrir et raisonner sur l’existence de co-dépendances à des
variables aléatoires communes peuvent générer des solutions de meilleure qualité.

Mots-clés : satisfaction distribuée sous contraintes (DisCSP), optimisation distribuée
sous contraintes (DCOP), confidentialité, incertitude, P-DPOP, E[DPOP], FRODO

x

Contents
Acknowledgements v

Abstract (English/Français) vii

Table of Contents xiv

List of Figures xvi

List of Tables xvii

List of Algorithms xix

List of Symbols xxiii

1 Introduction 1

2 Preliminaries 7
2.1 The DisCSP and DCOP Formalisms . 7
2.2 Examples of Applications . 9

2.2.1 Graph Coloring . 10
2.2.2 Meeting Scheduling . 10
2.2.3 Sensor Networks . 11
2.2.4 Resource Allocation . 13
2.2.5 Distributed Vehicle Routing Problems 14
2.2.6 Equilibria in Graphical Games . 16

2.3 Complete DisCSP Algorithms . 19
2.3.1 ABT: Asynchronous Backtracking 19
2.3.2 AWC: Asynchronous Weak Commitment 20
2.3.3 AAS: Asynchronous Aggregation Search 21
2.3.4 AFC: Asynchronous Forward Checking 23
2.3.5 APO: Asynchronous Partial Overlay 23
2.3.6 ConcDB: Concurrent Dynamic Backtracking 24
2.3.7 MPC-DisCSP4: Secure Multiparty Computation 24

2.4 Complete DCOP Algorithms . 24
2.4.1 SynchBB: Synchronous Branch and Bound 24

xi

Contents

2.4.2 ADOPT: Asynchronous Distributed OPTimization 25
2.4.3 OptAPO: Optimization by Asynchronous Partial Overlay 29
2.4.4 DPOP: Dynamic Programming Optimization Protocol 29
2.4.5 AFB: Asynchronous Forward Bounding 32
2.4.6 NCBB: No-Commitment Branch and Bound 33
2.4.7 ConcFB: Concurrent Forward Bounding 33

2.5 Incomplete DCOP Algorithms . 33
2.5.1 DBA: Distributed Breakout Algorithm 33
2.5.2 DSA: Distributed Stochastic Algorithm 34
2.5.3 MGM: Maximum Gain Message 35
2.5.4 A-DPOP: Approximate DPOP . 35
2.5.5 The Max-Sum Algorithm . 35
2.5.6 DaCSA: Divide and Coordinate Subgradient Algorithm 36
2.5.7 DALO: Distributed Asynchronous Local Optimization 37

3 Strong Privacy Guarantees in DCOP 39
3.1 Privacy Definitions . 39
3.2 Related Work . 41

3.2.1 Cooperative ElGamal Homomorphic Encryption 41
3.2.2 Privacy in DisCSP and DCOP . 44
3.2.3 Privacy in Linear Programming 49

3.3 The P-DPOP Algorithm . 50
3.3.1 Overview of the Algorithm . 51
3.3.2 Root Variable Election . 51
3.3.3 UTIL Propagation . 53
3.3.4 VALUE Propagation . 56
3.3.5 Algorithm Properties . 56
3.3.6 P-DPOP−: Trading off Topology Privacy for Performance 58

3.4 Full Decision Privacy: the P3/2-DPOP Algorithm 58
3.4.1 Overview of the Algorithm . 59
3.4.2 Assigning Unique IDs to Variables 60
3.4.3 Routing of Messages along a Circular Variable Ordering 60
3.4.4 Choosing a New Root Variable . 62
3.4.5 Algorithm Properties . 64

3.5 Full Constraint Privacy: the P2-DPOP Algorithm 65
3.5.1 Encrypted UTIL Propagation along a Linear Variable Order . . . 66
3.5.2 Decrypting an Optimal Value for the Root Variable 67
3.5.3 Algorithm Properties . 68

3.6 Privacy Analysis . 69
3.6.1 Agent Privacy . 69
3.6.2 Topology Privacy . 73
3.6.3 Constraint Privacy . 81

xii

Contents

3.6.4 Decision Privacy . 84
3.7 Experimental Results . 85

3.7.1 Graph Coloring . 86
3.7.2 Meeting Scheduling . 88
3.7.3 Resource Allocation . 91
3.7.4 Equilibria in Graphical Games . 93
3.7.5 Vehicle Routing Problems . 96

3.8 Summary . 98

4 StochDCOP: DCOP under Stochastic Uncertainty 99
4.1 DCOP under Stochastic Uncertainty . 99

4.1.1 StochDCOP Formalism . 99
4.1.2 Evaluation Functions . 101

4.2 Examples of Applications . 104
4.2.1 Stochastic Graph Coloring . 104
4.2.2 Sensor Networks with Moving Targets 105
4.2.3 Stochastic Vehicle Routing . 107
4.2.4 The Distributed Kidney Exchange Problem 109

4.3 Related Work . 110
4.3.1 Distributed Coordination of Exploration and Exploitation 111
4.3.2 DCOP with Utility Distributions 111
4.3.3 Quantified DCOP with Virtual Adversaries 112

4.4 Complete, Centralized Reasoning: Comp-E[DPOP] 115
4.4.1 General Approach Based on Virtual Agents 115
4.4.2 Distributed Pseudo-tree Generation 117
4.4.3 Generating a Consistent Pseudo-tree 119
4.4.4 Algorithm Properties . 121

4.5 Incomplete, Local Reasoning: Local-E[DPOP] 123
4.6 Incomplete, Global Reasoning: Global-E[DPOP] 127

4.6.1 Sharing Information about Dependencies on Random Variables 128
4.6.2 Limiting the Propagation of Information 129
4.6.3 Related Work on Resource-Constrained DCOP 131
4.6.4 Influence of the Choice of the Pseudo-tree 132
4.6.5 Hybrid E[DPOP] for Non-commensurable Evaluation Functions 134
4.6.6 Complexity Analysis . 135

4.7 Equivalence Theorems . 135
4.7.1 Global-E[DPOP]≡ Local-E[DPOP] 135
4.7.2 Central-E[DPOP]≡ Global-E[DPOP] 137

4.8 Approximations by Sampling Scenarios 138
4.8.1 Motivation and Challenges . 138
4.8.2 Independent Sampling . 140
4.8.3 Collaborative Sampling . 141

xiii

Contents

4.8.4 Consensus vs. Expectation . 142
4.9 Experimental Results . 144

4.9.1 Solution Quality/Complexity Tradeoff 146
4.9.2 Partial Centralization and Privacy Loss 152
4.9.3 Effects of Sampling . 153

4.10 Summary . 156

5 The FRODO 2 Platform 159
5.1 Architecture . 160

5.1.1 Communications Layer . 160
5.1.2 Solution Spaces Layer . 161
5.1.3 Algorithms Layer . 163

5.2 Features . 164
5.2.1 Performance Metrics . 165
5.2.2 Graphical User Interface . 165
5.2.3 Websites . 166

5.3 Contributors . 167

6 Conclusion 169

Bibliography 188

Index 189

Curriculum Vitae 193

List of Personal Publications 195

xiv

List of Figures
2.1 The constraint graph for a simple graph coloring problem. 10
2.2 The constraint graph for a simple meeting scheduling problem. 11
2.3 Sample sensor network problem. 12
2.4 Constraint graph for target k (in the middle). 13
2.5 A simple DisSDMDVRP instance. 15
2.6 The DCOP constraint graph corresponding to Figure 2.5. 16
2.7 An instance of the party game. 18
2.8 The problem in Figure 2.1 and a possible pseudo-tree. 26
2.9 DPOP’s pseudo-tree and UTIL messages on the problem in Figure 2.8. 30
2.10 The factor graph for the problem in Figure 2.8. 35

3.1 The graph coloring problem from Figure 2.1. 40
3.2 The pseudo-tree from Figure 2.9. 52
3.3 The UTIL message x1 → x4 in Figure 3.2. 53
3.4 The UTIL message received by agent a(x3) in Figure 3.2. 56
3.5 The (counter-clock-wise) circular ordering based on Figure 3.2. 62
3.6 UTIL propagation (in cleartext) in P2-DPOP for Figure 2.1. 66
3.7 Two indistinguishable timelines from x’s point of view. 75
3.8 Runtime performance on graph coloring problems. 87
3.9 Communication performance on graph coloring problems. 87
3.10 Runtime performance on small meeting scheduling problems. 88
3.11 Communication performance on small meeting scheduling problems. 88
3.12 Runtime performance on large meeting scheduling problems. 90
3.13 Communication performance on large meeting scheduling problems. 90
3.14 DisCSP formulation for a resource allocation problem. 92
3.15 Runtime performance on resource allocation problems. 93
3.16 Communication performance on resource allocation problems. 93
3.17 The constraint graph for the game in Figure 2.7. 94
3.18 Runtime performance on party games. 95
3.19 Communication performance on party games. 96

4.1 Sample stochastic graph coloring problem. 104
4.2 Allowed target moves. 105

xv

List of Figures

4.3 Partial constraint graph for target k. 106
4.4 Some remarkable on/off sensor configurations. 107
4.5 A StochDisSDMDVRP instance. 108
4.6 The StochDCOP constraint graph for Figure 4.5. 108
4.7 A consistent pseudo-tree for the constraint graph in Figure 4.1. 116
4.8 Rob-Local-E[DPOP]’s UTIL messages for the problem in Figure 4.1. . . 124
4.9 Possible pseudo-trees for a sensor network problem. 124
4.10 Rob-Global-E[DPOP]’s UTIL messages for the problem in Figure 4.1. . . 130
4.11 Runtime on random graph coloring problems. 146
4.12 Runtime on random graph coloring problems. 147
4.13 Amount of information exchanged on graph coloring problems. 147
4.14 Optimality gap for Cons and Cons/Exp on graph coloring problems. . 148
4.15 Optimality gap for Rob-E[DPOP] on graph coloring problems. 149
4.16 Optimality gap for Cons and Cons/Exp on kidney exchange problems. 150
4.17 Level of centralization of Comp-E[DPOP] on graph coloring problems. 153
4.18 Solution quality convergence with the number of samples. 154
4.19 Solution quality convergence with the number of samples. 155

5.1 General FRODO software architecture. 160
5.2 FRODO’s main GUI window. 166
5.3 FRODO’s auxiliary GUI windows. 166

xvi

List of Tables
3.1 Privacy guarantees of various algorithms. 69
3.2 Experimental results on DisSDMDVRP benchmarks. 97

4.1 Optimal colorings for the problem in Figure 4.1. 104
4.2 Colorings found for the problem in Figure 4.1. 126
4.3 Pseudo-trees for a sensor network problem, varying the heuristic. . . . 133
4.4 The E[DPOP] family of algorithms. 139
4.5 Solution quality and performance on VRP benchmarks. 151

xvii

List of Algorithms
1 The ABT algorithm for variable x. 20
2 Backtracking in AWC. 21
3 The AFC algorithm for variable xi. 22
4 The SynchBB algorithm for variable xi. 25
5 Root election algorithm for variable x. 27
6 Pseudo-tree generation algorithm for variable x 28
7 DPOP’s UTIL propagation for variable x 30
8 The DBA algorithm for variable x. 34
9 The DSA algorithm (replacement for lines 11 to 24 in Algorithm 8) . . . 34
10 The Max-Sum algorithm. 36
11 The MPC-DisCSP4 algorithm for agent ai. 47
12 MULTIPLY(V1, V2) for agent ai. 48
13 Overal P-DPOP algorithm, for variable x 51
14 Anonymous root election algorithm for variable x. 52
15 P-DPOP’s obfuscated UTIL propagation, for variable x 54
16 Overall P3/2-DPOP algorithm with full decision privacy, for variable x . 59
17 Pseudo-tree and unique ID generation algorithm for variable x 61
18 Sending a message M clock-wise in the circular variable ordering. . . . 62
19 Algorithm to choose a new root, for variable x 63
20 Collaborative decryption of a multiply-encrypted cyphertext e 64
21 P2-DPOP’s UTIL propagation procedure, for variable x 66
22 Finding an optimal value for x in the encrypted cost matrix m(x) 67
23 Finding a feasible value in the encrypted Boolean matrix m(x) 68
24 Pseudo-tree generation algorithm for variable x 118
25 Local-E[DPOP]’s UTIL propagation for variable x, with parent y 123
26 Central-E[DPOP]’s UTIL propagation for variable x, with parent y . . . 128
27 Global-E[DPOP]’s UTIL propagation for variable x, with parent y 130
28 Distributed computation of the lcas, for each decision variable x 131
29 Collaborative sampling procedure, for each decision variable x 141
30 Computational steps for the Exp-Local- approach. 143
31 Computational steps for the Cons/Exp-Local- approach. 144

xix

List of Symbols

A a list of agents

ai the ith agent

a(x) the agent owning the decision variable x

C a list of constraints

ci the ith constraint

cX agent X’s internal constraint

cmax the maximum feasible cost value of a constraint

C the set of customers in a VRP

ci the ith customer in a VRP

D a list of domains for decision variables

Di the domain of the ith decision variable xi

Dx the domain of the decision variable x

Dmax the size of the largest variable domain

D̃x
y the obfuscated representation of variable y’s domain used by variable x

∆ a list of domains for random variables

∆i the domain of the ith random variable

∆r the domain of the random variable r

di the ith depot in a VRP

δX = 1 if X is true, 0 otherwise

Er [c] the expectation of the cost function c with respect to the random variable r

xxi

List of Algorithms

ec the evaluation function with respect to the cost function c

erc the evaluation function with respect to the cost function c, restricted to the
random variable r

E(m) the ElGamal encryption of a message m

H the visibility horizon of each depot, in a VRP

idx the unique identifier associated to variable x by Algorithm 17

id+
x an upper bound on idx (Algorithm 17, line 5)

incrmin a free parameter of Algorithm 17 (line 5)

keyyx the key used by variable y to obfuscate the dependency of its subtree’s cost/u-
tility on variable x, in P-DPOP (Algorithm 13, line 13)

lca(r) the lowest common ancestor of all decision variables in the pseudo-tree that
must enforce a constraint involving the random variable r

Lmax the maximum route length of a vehicle, in a VRP

mi the ith meeting, in a meeting scheduling problem

mX
i the decision variable modeling the time at which agent X schedules the ith

meeting, in a meeting scheduling problem

n the number of decision variables

n+ an upper bound on n, computed by Algorithm 17

Nv the list of neighbors of the vertex v in a graph

ne the number of edges in the constraint graph

nV the number of vehicles controlled by each depot, in a VRP

P a list of probability distributions

πi the probability distribution for the ith random variable

πr the probability distribution for the random variable r

P the consensus evaluation function

φmax an upper bound on the diameter of the constraint graph

Q the set of customer demands in a VRP

qi the demand of the ith customer, in a VRP

xxii

List of Algorithms

Qmax the maximum vehicle load of a vehicle, in a VRP

R a list of random variables

ri the ith random variable

σ a mixed strategy in a game

σxy the permutation applied by variable x to variable y’s domain

S the set of pure strategies in a game

s(c) the size of the scope of the cost function c

Sr a list of sampled values for the random variable r

sepx the separator of variable x in the pseudo-tree

sepmax the size of the largest separator

u a constraint (or a value thereof), expressed in terms of utility

vectorx the (encrypted) rerooting vector for variable x (Algorithm 16, line 3)

vrpi the VRP constraint of the ith agent

w the treewidth of the constraint graph

wi the induced width of the pseudo-tree

X a list of decision variables

xi the ith decision variable

x∗ the optimal value chosen for the decision variable x

ỹx the codename used by variable x to represent variable y

xxiii

1 Introduction

In many real-world decision problems one might be faced with, the optimal decision to
make depends on simultaneous decisions made by others; in such settings, assuming
that the common goal of the decision-makers is to find a joint choice of decisions that
maximizes the social welfare, they need to exchange information about their respective
constraints and preferences in order to coordinate their decisions. Consider for in-
stance two delivery companies working under the same franchise, which must decide
how to serve customers who have posted requests for various quantities of goods,
so that the overall delivery cost is minimized. In the Operations Research literature,
this problem is known as the Multiple-Depot, Vehicle Routing Problem (MDVRP), in
which each company controls a depot of goods and a fleet of delivery vehicles; the
decision problem is which depot should serve which customers, with which vehicles,
and in which order, so as to minimize the total route length, under the constraint that
the vehicles have limited capacities. None of the two companies’ knowledge about
the overall problem is sufficient for the company to solve it on its own: typically, no
company knows all the details of the other company’s vehicle fleet, internal costs, and
previous delivery commitments — in fact, even if they are business partners, the other
company will probably want to keep some of this information private. Therefore, in
order to solve the problem optimally, the agents need to follow some sort of decision
protocol that involves exchanging ideally just enough information to find the optimal
solution.

Another every-day example of such a decision problem requiring the coordination
of multiple participants is the problem of meeting scheduling. Consider a group of
friends who would like to choose a date and time for a gathering, such that they can all
attend. One simple way to proceed is to designate one organizer, to whom all other
attendees should report their respective availabilities and preferences, and who is then
responsible for picking a time that suits all. One typical issue with this centralized
solution process is that of privacy: the participants are not necessarily willing to
reveal their full lists of available time slots to anyone. Another issue arises when some

1

Chapter 1. Introduction

participants’ availabilities actually depend on the dates and times of other events with
other people; it then becomes cumbersome and often undesirable to centralize at one
participant all the necessary information about all events to be scheduled, even those
to which she is not invited.

In order to be able to mathematically formalize such distributed decision problems
and develop general algorithms to solve them, previous work in Distributed Artifi-
cial Intelligence has proposed the framework of Distributed Constraint Satisfaction
Problems (DisCSPs). In a DisCSP, the decision-makers (or the computers acting on
their behalves) are called agents, and each decision that a given agent must make is
modeled by a decision variable, which must be assigned a value taken among a set of
possible values corresponding to the possible choices for that decision. The agents
also express constraints on subsets of decision variables, which specify which combi-
nations of value assignments to these decision variables are allowed or disallowed. A
solution to the problem is a value assignment to all decision variables that satisfies
all the constraints. In a generalization of the DisCSP formalism, called Distributed
Constraint Optimization (DCOP), the constraints that the agents express are also al-
lowed to specify costs or utilities that variable-value assignments incur to the agents;
an optimal solution to the problem is then a value assignment to all decision variables
such that the total sum of all costs across all agents is minimized (or the total utility is
maximized).

Over the recent years of research in this field, a number of distributed algorithms
have been proposed to solve DisCSPs and DCOPs, without having to centralize all
information about the problem into one agent. Typically, many of these algorithms are
based on a general problem-solving technique called search, in which agents make
tentative decisions (i.e. tentative assignments of values to their decision variables),
then communicate these tentative decisions to other agents, which must attempt
to make their own decisions accordingly, or send notifications if previous tentative
decisions made by other agents have made their own local problem infeasible (or
sub-optimal).

Novel Contributions on the Topic of Privacy

In this thesis, we advance the state of the art in the research on DisCSP and DCOP
by addressing two issues that previous algorithms have overlooked, or only partially
considered. The first issue is that of the privacy of the agents: while most existing
algorithms make use of distributed computation to make sure that the agents do not
need to reveal all their private constraints and preferences to a central solver, most
of these algorithms still implicitly or explicitly leak a lot of this private information
through the messages exchanged by the agents. The research that has been carried
out so far on this topic of privacy in DisCSP/DCOP has produced algorithms that can

2

be classified in two categories. The first category is that of modifications of existing
algorithms, which have to be “patched" in order to partially prevent some of their
privacy leaks. Unfortunately, in most cases those patches are only partial fixes, and the
resulting algorithms still leak private information, often in such a way that cannot be
easily predicted: depending on the problem instance, any part of the problem initially
known to only one agent may be revealed to one or more other agents with some non-
zero probability. The second category contains new, often very different algorithms
that have been inspired by research in the field of Cryptography, and that attempt to
provide strong guarantees that at least some information about the problem will not be
leaked, because it is only communicated to other agents in encrypted form. However,
these guarantees usually come at a prohibitive cost in terms of computational and/or
communication complexity, and often only apply to some types of information about
the problem.

We propose three new algorithms that also make use of known cryptographic tech-
niques, but in such a way that they can scale to larger problems than before, while
providing strong privacy guarantees that cover more types of information about the
problem. In particular, we identify four types of information that agents might want
to protect, and we define four corresponding types of privacy that our algorithms are
the first to address simultaneously. The first such type is agent privacy, which involves
hiding the presence and the identity of each agent from other agents that it does not
directly share constraints with. For instance, if a journalist is trying to schedule an
interview with the CEO of a company, who simultaneously wants to choose a date for a
business lunch with the CEO of another company, then the involvement of the second
CEO in the meeting scheduling problem should be hidden from the journalist, who
could otherwise then infer that the two companies might have plans to merge. We
also define topology privacy, which goes one step further, preventing the journalist
from discovering the existence of any other meeting in the problem to which she is
not invited. More generally, this second type of privacy covers the knowledge about
the structure of the problem, in terms of which decision is constrained with which
other decision. These first two types of privacy have been largely overlooked in the
DisCSP/DCOP literature so far.

The third type is the one that is most often addressed by previous algorithms, and
which we call constraint privacy; it involves hiding from other agents how must cost
or utility a given agent is assigning to various variable-value assignments through
the constraints it expresses. For instance, this includes hiding from the journalist
the details of her interviewee’s availability schedule and preferences. Finally, decision
privacy, which is more rarely addressed in the literature, deals with only revealing to
each agent the part of the solution to the problem that concerns its own decisions,
while keeping secret the choices made by the other agents.

3

Chapter 1. Introduction

Novel Contributions on the Topic of Uncertainty

The second issue that we address in this thesis, and which has been largely ignored in
the DisCSP/DCOP literature up until 2009, is the issue of uncertainty in the problem
knowledge. In many multi-agent optimization problems, the agents must agree on
and commit to decisions before a certain deadline, but the effective costs or utilities
that are derived from these decisions actually depend on uncertain, uncontrollable
events that may happen after the decisions have been made. For instance, meeting
attendees might have to choose a time for a meeting, before they know exactly how
much time it might take each attendee to arrive to the meeting location, because this
time depends on road traffic or on airplane delays. While such sources of uncertainty
are not controllable by the agents, it is often the case that they are partly predictable:
typically, the agents might have models of the uncertainty that estimate the probabili-
ties of various events, which can be learned from previous experiences or historical
data.

In this thesis, we propose a novel extension of the DCOP formalism to include descrip-
tions of such sources of uncertainty; we call this extension DCOP under Stochastic
Uncertainty (StochDCOP). In a StochDCOP, in addition to the decision variables that
model the decisions that have to be made by the agents, random variables are used to
model sources of uncertainty, or, in other words, decisions that are made by Nature
after the agents have made their decisions, and which affect the costs or utilities that
are incurred to the agents.

StochDCOP instances typically exhibit two interesting properties, which give rise to
two contributions of this thesis. The first property is that a given source of uncertainty
often only has a limited influence on the overall problem, only affecting a small number
of the agents. In this thesis, we study whether it is possible to exploit the locality of
uncertainty, in order to produce algorithms that gain in efficiency by localizing the
reasoning about uncertainty. The second property is that several agents might express
constraints that depend on a common source of uncertainty, but in a different way.
Consider for instance a vehicle routing problem in which the location of a customer
may be uncertain; the cost for a delivery company to serve the customer will be higher
if the customer is further away from its depot, while the same move might take the
customer closer to another company’s depot, hereby lowering the cost of delivery
incurred to that other company. In this thesis, we also investigate whether solutions of
higher quality can be obtained if agents explicitly exchange information about how
their respective local problems depend on various sources of uncertainty, in order to
make better-informed decisions.

4

Outline of this Thesis

In Chapter 2, we first recall some background knowledge that is necessary to under-
stand our contribution to the state of the art. We formally define the DisCSP and
DCOP frameworks, and we illustrate how they can be used to model various examples
of multi-agent decision problems. We then briefly review many of the algorithms
that have been proposed in the literature to solve DisCSPs and DCOPs, with a special
emphasis on the DPOP algorithm upon which we base our own new algorithms.

Chapter 3 is the first technical chapter, in which we describe three novel privacy-
preserving algorithms, named respectively P-DPOP, P3/2-DPOP, and P2-DPOP. We pro-
vide formal proofs of the various privacy guarantees they provide, and we report
empirical results of thorough experiments on various classes of problem benchmarks,
in which we have compared our algorithms with the previous state of the art in privacy-
preserving DisCSP/DCOP.

Our contributions on the second topic of uncertainty are described in Chapter 4.
After formally defining our new StochDCOP formalism and illustrating it on various
multi-agent decision problems under uncertainty, we propose a family of algorithms,
which we call E[DPOP]. We show how these algorithms compare to each other both
theoretically, and empirically on new classes of StochDCOP benchmarks.

Finally, in Chapter 5, we describe how all these algorithms (and many others) have
been implemented as part of a new software platform, called FRODO 2, which has
been made available open-source for the benefit of the research community and of
potential users of the DisCSP/DCOP technology.

5

2 Preliminaries

This preliminary chapter presents the general background knowledge that is at the
foundation of our work. In particular, Section 2.1 defines the two classes of mathe-
matical problems that are addressed in this thesis: Distributed Constraint Satisfaction
Problems (DisCSPs), and their generalization to optimization problems in the form of
Distributed Constraint Optimization Problems (DCOPs). Section 2.2 illustrates how
these two mathematical formalisms can be used to model a wide variety of multi-agent
decision problems. We then survey the different algorithms that have been proposed
in the literature to solve DisCSPs and DCOPs, and in particular the DPOP algorithm
[Petcu and Faltings, 2005b], on which all algorithms proposed in this thesis are based.

2.1 The DisCSP and DCOP Formalisms

A Distributed Constraint Satisfaction Problem [Yokoo et al., 1992] can be formally
defined as follows.

Definition 1 (DisCSP). A discrete Distributed Constraint Satisfaction Problem is a
tuple < A,X ,D, C > such that:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of decision variables, such that each variable xi is con-
trolled by a given agent a(xi);

• D = {D1, ..., Dn} is a set of finite variable domains, variable xi taking values inDi;

• C = {c1, ..., cm} is a set of hard constraints, where each ci is a s(ci)-ary function
of scope (xi1 , · · · , xis(ci)), ci : Di1 × ..×Dis(ci)

→ {false, true}, assigning false to
infeasible tuples, and true to feasible ones.

7

Chapter 2. Preliminaries

A solution is a complete assignment such that the conjunction
∧
ci∈C ci = true, which is

the case exactly when the assignment is consistent with all constraints.

Some of the important assumptions of the DisCSP framework are the following. First,
we assume that all the details of a given constraint ci are known to all agents involved;
if an agent wants to keep some constraints private, it should formulate them in such
a way that they only involve variables it controls. Furthermore, we assume that two
neighboring agents (i.e. agents that share at least one constraint) are able to com-
municate with each other directly, and that messages are delivered in FIFO order
and in finite time. On the other hand, we assume that two non-neighboring agents
initially ignore everything about each other, even including their involvement in the
problem. For clarity and simplicity, we will also assume that a DisCSP is not composed
of completely disconnected subproblems; otherwise, each subproblem can be solved
independently. In a slight abuse of notation, the agent a(x) owning a variable x will
often be referred to simply as x.

A DisCSP is distributed in nature, in two respects:

1. The decision power is distributed: each agent is in charge of choosing values for
the decision variables it controls;

2. The knowledge is distributed: each agent only knows the constraints over the
decision variables it controls, and knows all the variables involved in these con-
straints.

In some problem domains, specifying whether an assignment is feasible or infeasible
is not enough: agents might want to express soft preferences over the set of feasible
solutions. Distributed Constraint Optimization Problems (DCOPs) are a generalization
of DisCSPs, in which the constraints associate costs to variable assignments, and the
goal is to minimize the sum of all costs.

Definition 2 (DCOP). A discrete Distributed Constraint Optimization Problem is de-
fined as a tuple < A,X ,D, C >, such thatA, X andD are the same as in Definition 1:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of decision variables, such that each variable xi is con-
trolled by a given agent a(xi);

• D = {D1, ..., Dn} is a set of finite variable domains, variable xi taking values inDi;

and furthermore:

8

2.2. Examples of Applications

• C = {c1, . . . , cm} is a set of soft constraints, where each constraint is a s(ci)-ary
function ci : Di1 × . . .×Dis(ci)

→ R ∪ {+∞} that assigns a cost ci(xi1 , . . . , xis(ci))
to combinations of assignments to a subset of decision variables; infinite costs
correspond to infeasible assignments.

A solution to the DCOP is an assignment to all decision variables that minimizes the
sum of all costs:

(x∗1, . . . , x
∗
n) = arg min

X

∑
i

ci .

Notice that Definition 2 is formulated in terms of cost minimization; equivalently, a
DCOP can be seen as a maximization problem in which the constraints define rewards,
or utilities. In fact, within the same given DCOP instance, some constraints may
express costs by taking on non-negative values, while other constraints may express
utilities by taking on non-positive values. In other words, the DCOP formalism can be
used to model multi-agent optimization problems that involve balancing costs and
utilities.

Not all algorithms that claim to be DCOP algorithms actually apply to this general
DCOP definition; in fact, most algorithms (with the noticeable exception of the DPOP
algorithm in Section 2.4.4) assume that constraints can only take on values in [0,+∞],
because they are designed to exploit monotonicity properties. If this is not the case,
the DCOP needs to be preliminarily rescaled by a sufficiently large constant. Some
algorithms additionally assume that constraints can only take on integer values, or
even values only in {0, 1}. The following two definitions put names on two particular
sub-classes of DCOP that make such restrictive assumptions on the allowed range of
cost values.

Definition 3 (DisWCSP). A Distributed, Weighted CSP is a DCOP in which cost values
are restricted to N ∪ {+∞} (non-negative unbounded integers).

Definition 4 (Max-DisCSP). A Max-DisCSP is a DCOP in which cost values are restricted
to {0, 1}. A Max-DisCSP can also be seen as the relaxation of a DisCSP in which the
solution is not necessarily feasible, but minimizes the number of constraint violations.

2.2 Examples of Applications

The DisCSP and DCOP formalisms are abstract, very general mathematical problems;
they can be used to describe a wide variety of problems in which multiple agents need
to coordinate their decisions. This section presents a number of such problem classes
that can be formulated as DisCSPs and/or DCOPs.

9

Chapter 2. Preliminaries

2.2.1 Graph Coloring

The graph coloring problem is often presented as the problem of assigning colors to
countries on a world map, such that no two neighboring countries have the same
color. In fact, many multi-agent decision problems can been seen as distributed graph
coloring problems, in which each agent needs to pick a color different from those of
its neighboring agents. An example of a concrete application is the allocation of time
schedules in a Time Division Multiple Access (TDMA) scheme for an ad-hoc wireless
network.

Figure 2.1 introduces a simple graph coloring problem instance that will be used to
illustrate the algorithms presented in the next chapter. We assume that the five nodes
in the graph correspond to five different agents, which must each choose a color among
red, blue and green (noted R, B and G respectively). These decisions are modeled
by the five DisCSP variables x1, . . . , x5 with common domain {R,B,G}. Each agent
may express a unary constraint on its variable; for instance, x1 does not want to be
assigned the color red. Binary, inequality constraints are imposed between each pair
of neighboring nodes.

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

x1 → x4

x2

x4 R B G

R true true true

B true true false

G true false true

x3 → x2

x2 R B G

true false true

x5 → x3

x3

R true

B true

G false

�∈ {B, R}

x2

x3

x5 x4

x1

x4 → x3

x2

x3 R B G

R true false false

B true true true

G false true true

Figure 2.1: The constraint graph for a simple graph coloring problem.

An optimization variant of the graph coloring problem can be produced by replacing
all hard constraints by soft constraints in which a cost of 0 indicates feasibility, and
a constraint violation corresponds to a cost of 1. The problem then becomes a Max-
DisCSP, for which the optimal solution is the one that minimizes the number of pairs
of neighboring nodes that have been assigned the same color.

2.2.2 Meeting Scheduling

Another class of multi-agent decision problems that can be modeled as DisCSPs is
multi-agent meeting scheduling, defined informally as follows. Several participants
want to schedule meetings with each other. Each meeting involves a subset of the
participants. Each participant has her own, private availabilities and preferences
regarding her meetings: typically, a participant cannot be attending two meetings at
the same time, and she may have additional constraints regarding the order of the

10

2.2. Examples of Applications

meetings, or unavailabilities imposed by pre-existing meetings. The final goal is to find
a feasible time slot for each meeting.

Various DisCSP formulations for this problem class have been proposed and studied
in [Maheswaran et al., 2004b]. The PEAV formulation (Private Events As Variables) is
the one that has the nicest privacy properties, and proceeds as follows. Each partic-
ipant X owns one variable mX

i per meeting mi she has to attend, and expresses her
availabilities and preferences regarding her meetings as an intra-agent constraint cX

over these variables. For each meeting, inter-agent equality constraints enforce that all
attendees agree on the time for the meeting. Figure 2.2 illustrates the constraint graph
of the resulting DisCSP for a three-agent, three-meeting problem instance in which
Agents A and B want to schedule a meeting m1 between each other, B and C want to
schedule m2, and A and C, m3.

��
��
mB

1 ��
��
mB

2
cB

Agent B
��
��
mC

2 ��
��
mC

3
cC

Agent C
=

��
��
mA

1 ��
��
mA

3cA

Agent A

= =

Figure 2.2: The constraint graph for a simple meeting scheduling problem.

2.2.3 Sensor Networks

There is a large amount of previous work on applying DisCSP and DCOP to various
sensor network problems; see [Vinyals et al., 2011a] for a survey of general Multi-Agent
Systems techniques that have been applied to this domain. Most of the DisCSP/DCOP
literature considered problems in which sensors are directional, and must decide in
which direction to point in order to track a number of targets. In [Zhang et al., 2005],
one sensor is assumed to be enough to track any given target, and the authors cast the
problem into a graph coloring problem, because sensors must coordinate so that each
area under surveillance is only tracked by one sensor. Such a casting can no longer
be done if several sensors are necessary to track a target; for instance, in [Béjar et al.,
2005], three sensors are needed, and the authors model the problem as a DisCSP in
which the agents are the targets, which is not necessarily very realistic. In contrast,
in [Modi et al., 2001; Maheswaran et al., 2004b; Zivan et al., 2009], the agents are the
sensors, which must coordinate in order to track targets with unknown and changing
positions.

In this section, we describe a slightly different problem, in which sensors are omni-
directional, and target positions are known. Section 4.2 then describes an extension of

11

Chapter 2. Preliminaries

this problem, in which the targets’ initial positions are known, but the targets can move
in various directions with known probability distributions. The goal for this variant of
the problem is not so much realism, but rather didacticism in explaining the properties
of the algorithms presented in Chapter 4.

Problem Definition

Consider a square grid of sensors, whose task is to observe a number of targets with
known, constant positions. Each sensor is omnidirectional, and can observe an un-
limited number of targets, but has a very limited view of the world: it is initially only
aware of the existence of, and can only communicate directly with its eight closest
neighboring sensors. It also has a limited sensing range, such that any given target
is only visible to its 4 closest neighboring sensors. This is illustrated in Figure 2.3, in
which sensor x2

2’s limited view of the world is highlighted in grey and bold.

x0
0

x1
0

x2
0

x3
0

x4
0

x0
1

x1
1

x2
1

x3
1

x4
1

x0
2

x1
2

x2
2

x3
2

x4
2

x0
3

x1
3

x2
3

x3
3

x4
3

x0
4

x1
4

x2
4

x3
4

x4
4

Figure 2.3: Sample sensor network problem.

The goal of the distributed decision problem is for each sensor to decide whether it
should turn itself on or off, in order to maximize all sensors’ overall utility gained by
observing the targets. This utility is defined as the sum of two competing terms:

• Each sensor has to pay a cost of 1 (i.e. receives a utility of−1) when it is on;

• For each target, if 3 or more neighboring sensors are on, the sensors share a utility
of 12. If only 2 sensors are observing the target, this utility drops to 6, and down
to 1 if only one sensor observes it.

Formulation as a DCOP

We propose the following DCOP formulation for the sensor network problem, illus-
trated in Figure 2.4. The set of agents A is the set of all sensors that are in view of at
least one target. For any sensor that cannot observe any target, its optimal decision is

12

2.2. Examples of Applications

obviously to turn itself off, and therefore it does not need to participate in the DCOP.
Each sensor agent in position (i, j) owns a single binary variable xji ∈ {0, 1}, where
xji = 1 if and only if the sensor is on. The constraints are the following:

• One unary soft constraint per sensor (i, j), expressing the negative utility (i.e.
positive cost) incurred by turning the sensor on:

ui,j : xji → −x
j
i ; (2.1)

• One 4-ary soft constraint per target k, modeling the utility gained by observing
the target, as a function of the number of neighboring on sensors involved:

uk : (xjkik , x
jk+1
ik

, xjkik+1, x
jk+1
ik+1)→

0 if

∑
xji = 0

1 if
∑
xji = 1

6 if
∑
xji = 2

12 if
∑
xji ≥ 3

. (2.2)

uik,jk

xjkik

uik,jk+1

xjk+1
ik

uik+1,jk

xjkik+1

uik+1,jk+1

xjk+1
ik+1

uk

Figure 2.4: Constraint graph for target k (in the middle).

2.2.4 Resource Allocation

A fair amount of research has been carried out on the topic of Multi-Agent Resource
Allocation [Chevaleyre et al., 2006]; however, much of the previous work that claims to
apply DisCSP or DCOP to resource allocation problems actually talk about meeting
scheduling [Maheswaran et al., 2004b] or sensor network problems [Modi et al., 2001],
in which the “resources" are the agents themselves. Arguably, from the point of view
of the agents (which, in the end, are the users of the system), these are not really
resource allocation problems, but rather scheduling and task allocation problems,
respectively. In this section, we are interested in problems in which the agents are

13

Chapter 2. Preliminaries

the resource consumers, and must coordinate their access to the limited-capacity
resources. The approach to sensor networks described in [Béjar et al., 2005] is closer to
this problem class, since the agents are the targets, which request access to a number
of resources (the sensors); however, their formulation as a DisCSP is quite specific to
their SensorDCSP domain. Besides the graph coloring problem, which can be seen as
a special case of a resource allocation problem in which the resources are the colors,
we are not aware of any previous work (apart from our own; see Section 3.7.3) that
applied DisCSP to address general resource allocation problems, in which the agents
may request combinations of resources.

However, there is some sparse previous work on applying DCOP to the optimization
variant of the resource allocation problem, which corresponds to winner determination
in Combinatorial Auctions (CAs) [Parsons et al., 2011]. In CAs, the agents are bidders
who express utilities over being assigned bundles of items. While CAs have been the
subject of a considerable amount of work, most of the algorithms proposed are specific
to auctions, and very little research has actually been carried out that formalized the
winner determination problem as a DCOP. We are only aware of two exceptions: Silaghi
[2005b] proposed a DCOP formulation, but used different assumptions about the
knowledge of agents, assuming that variables are public and constraints are private
(see Section 3.2.2 for a discussion of these different assumptions). Finally, Petcu [2007]
proposed a DCOP formulation in which each agent owns one variable per item it is
interested in, and the domain for the variable is the list of bidders who are interested
in the item. In Section 3.7.3, we propose a novel formulation that has better privacy
properties.

2.2.5 Distributed Vehicle Routing Problems

Vehicle Routing Problems (VRPs) [Toth and Vigo, 2001] are a class of problems in which
customers want to be delivered certain quantities of goods that are stored in a depot. A
fleet of vehicles with limited capacities is available to deliver the goods; the problem
is that of optimally routing the vehicles so as to serve all customers at minimal cost,
where the cost is often taken as the sum of the vehicles’ route lengths. Multiple variants
of the VRP have been proposed and studied in the literature [Gendreau et al., 2007];
here we consider a variant involving multiple depots, each controlled by a separate
agent, and in which each customer’s demand can be split among multiple depots.

Definition 5 (DisSDMDVRP). The Distributed, Split-Delivery, Multiple-Depot, Vehicle
Routing Problem is defined as a tuple < D,nV , Qmax, Lmax, H,C,Q >, where:

• D = {d1, . . . , dnD} is a set of depots in the Euclidian plane, each controlled by a
different delivery company;

• nV is the number of vehicles at each depot;

14

2.2. Examples of Applications

• Qmax and Lmax are respectively the maximum load and maximum route length of
any vehicle;

• H ≤ Lmax/2 is the visibility horizon of each company, which defines the bound-
aries of its knowledge of the overall problem. Depot di is only aware of and can
only serve the customers that are within distance H ;

• C = {c1, . . . , cnC} is a set of customers with known locations;

• Q = {q1, . . . , qnC} ∈ NnC are the customer demands, which can be split among
multiple companies.

The goal is for the companies to agree on who should serve which customers, using
which vehicle routes, so as to fully serve all visible customers, at minimal total route
length.

Figure 2.5 shows a DisSDMDVRP instance with 4 depots and 4 customers. Each depot
is at distance 1 of its two closest customers, and owns nV = 2 vehicles, with Qmax = 1

and Lmax = 2.5, so that a vehicle can only serve one customer, of common demand
q = 1.

c4

c1

c3

c2h h
h h

d2

d3d1

d4

Figure 2.5: A simple DisSDMDVRP instance.

The visibility radius isH = 1.25, such that, for instance, depot d1 only knows customers
c1 and c4, and ignores the existence of c2 and c3. It also knows the two companies d2

and d4, and will have to coordinate with each of them to decide who serves c1 and c4,
but d2 and d4 do not know about each other, and neither do d1 and d3.

In [Léauté and Faltings, 2011a], we have shown how a DisSDMDVRP can be refor-
mulated as a DCOP, with one agent per company/depot. Depot di owns one integer
variable xji ∈ [0, qj] for each visible customer cj , modeling how much of the customer’s
demand qj it serves. Variables need not be created for customers that can only be
served by a single depot, since these variables would necessarily take their maximum
values. The DCOP constraints are of two types:

15

Chapter 2. Preliminaries

1. For each customer cj , if the set Dj of depots within visible distance H of cj is
non-empty, then the following |Dj |-ary hard constraint enforces that cj ’s demand
must be fully served: ∑

di∈Dj

xji = qj .

2. For each depot di, if the set Ci = {cj1 , . . . , cjn} of visible customers is non-empty,
then the following |Ci|-ary soft constraint represents the cost of the optimal solu-
tion to di’s own VRP, as a function of how much of the request of each customer
in Ci it serves:

vrpi(x
j1
i , . . . , x

jn
i) = optimal cost of di’s VRP ∈ [0,∞] .

Notice that evaluating a constraint vrpi on a given assignment of values to its vari-
ables requires solving a (centralized) single-depot VRP. Such an evaluation can been
seen as a call by agent di to a local subroutine, which does not require exchanging
additional information with other agents, and can be implemented using any existing
VRP algorithm. This modeling approach decouples the distributed, master problem of
assigning customers to agents, solved using a DCOP algorithm, from the local, slave
problem of routing a given agent’s vehicles, solved using a traditional VRP algorithm.

The DCOP model for the DisSDMDVRP instance in Figure 2.5 is illustrated in Figure 2.6.
In this example, each agent owns two variables, whose respective values model the
quantities of goods the company is going to deliver to the two customers in its area
of visibility. Internally, each agent has to solve a VRP problem, represented by a vrpi
constraint over its variables. Inter-agent sum constraints enforce that each customer’s
demand must be fully served.

x4
1

x1
1��
��

��
��vrp1

d1

x3
3

x2
3��
��

��
��vrp3

d3

��
��
��
��

x1
2 x2

2

vrp2
d2∑

= q1
∑

= q2

��
��
��
��

x4
4 x3

4

vrp4
d4

∑
= q4

∑
= q3

Figure 2.6: The DCOP constraint graph corresponding to Figure 2.5.

2.2.6 Equilibria in Graphical Games

Graphical games are strategic games in which each player’s reward only depends on
the actions of a limited subset of the players, called neighbors. The game can be

16

2.2. Examples of Applications

seen as being composed of coupled, local games played by subsets of players. The
neighborhood relationships in the game can be represented by a graph, in which
nodes are players, and edges represent the influences of agents’ actions on other
agents’ rewards/utilities. Several formal definitions can be found in the literature;
Mura [2000] proposed the concept of Game Networks (G nets); we adopt the following
definition from [Kearns et al., 2001]:

Definition 6 (graphical game). An n-player graphical game can be defined as a tuple
(G,S,U) such that:

• G is an undirected graph in which each vertex v is a player, and edges define the
player’s neighborhood Nv;

• S is a finite set of strategies, assumed to be the same for all players for simplicity;

• U = {u1, . . . , un} defines the utility ui of each player i, as a function of the strategies
of i and her neighbors: ui : S|Ni∪{i}| → R.

The solution of a game is typically a choice of strategies for the players such that
they play at some form of desirable equilibrium. Two types of equilibria are usually
considered. A pure-strategies Nash equilibrium (NE) is a choice of a strategy si for each
player i, such that si is a best response to her neighbors ni ∈ Ni playing their respective
best responses sni :

∀s ∈ S ui(s
ni∈Ni , si) ≥ ui(sni∈Ni , s) . (2.3)

While a pure-strategy equilibrium might not always exist, there always exists a mixed-
strategies equilibrium [Nash, 1950], where a mixed strategy σ for agent i is a probability
distribution over the pure strategy space S. An ε-approximation of such a mixed Nash
equilibrium (mNE) is defined by each player i choosing a mixed strategy σi that is an
ε-best response in expectation, assuming that her neighbors do the same:

∀σ E
[
ui(σ

ni∈Ni , σi)
]

+ ε ≥ E
[
ui(σ

ni∈Ni , σ)
]
. (2.4)

Such ε-mNEs can be obtained by first discretizing the probability space [0, 1] into
{0, τ, 2τ, . . . , 1}, where τ is the discretization parameter. Soni et al. [2007] proposed
a formula for this parameter τ as a function of ε that guarantees the existence of an
ε-mNE in the discretized problem.

If the players can play the game repeatedly, choosing in turn the best-response strate-
gies that maximize utility based on their respective neighbors’ current strategies,
then the game should converge to an equilibrium. However, in the case of one-shot,

17

Chapter 2. Preliminaries

simultaneous-move games, it is not possible to repeat the game until an equilibrium
is reached. It can then make sense for the agents to preliminarily compute such an
equilibrium before they choose their respective strategies.

To illustrate this problem, let us consider a particular example of a graphical game.
In the party game[Singh et al., 2004], the players are invited to a common party and
need to decide whether to attend (S = {0, 1}). The graph G is a social interaction
graph between players, such that the neighbors Ni of player i are her acquaintances.
Player i’s cost function is defined as follows:

− ui =

{
ai + Σn∈Ns=1

i
ln if i attends

0 else
(2.5)

where ai ∈ [−1, 1] is the cost that the player assigns to attending the party, N s=1
i is the

subset of i’s neighbors that attend, and ln ∈ {−1, 1} describes whether player i likes
(ln = −1) or dislikes (ln = 1) her neighbor n.

0 -0.5 1-1

2

-1

-1
0.1

3

1

4

-1-1

0.2

-1

-0.1

-1

-0.4

Figure 2.7: An instance of the party game.

Instances of the party game can be illustrated as labelled, bi-directional graphs (Fig-
ure 2.7), in which the nodes are the players (like in the underlying graph G), and each
edge corresponds to one direction of an edge in the underlying graphG, and is labelled
by the cost incurred to the tail by the attendance of the head (the case head = tail
corresponds to ai). A pure Nash equilibrium for the game in Figure 2.7 involves all
players deciding to attend the party. This can be seen as follows. Players 3 and 4’s
preferred strategy is to attend the party, because they both assign a negative cost (i.e.
a positive utility) to attending, and they both like all their respective neighbors (i.e.
player 1); therefore they are better off attending, regardless of whether player 1 attends.
On the other hand, player 1 likes player 4 but dislikes player 3; since they are both
attending, their respective influences on player 1’s preferred strategy cancel each other
out. Player 1 also assigns a positive cost to attending the party, so she will only want to
attend if player 0, which she likes, also decides to attend. Player 0, on the other hand,
assigns a negative cost to attending, and likes all her neighbors; therefore she will

18

2.3. Complete DisCSP Algorithms

attend, and so will player 1. Finally, player 2 will also attend since player 0’s attendance
compensates the positive cost that she assigns to attending.

There can be multiple ways to formalize the problem of finding an equilibrium to
a graphical game as a DisCSP. In the most natural DisCSP formulation, proposed in
[Vickrey and Koller, 2002], each agent/player owns one single variable, representing
the player’s strategy. Each player expresses one constraint over her variable and those
of her neighbors, enforcing that her strategy must be a best response to her neighbors’
strategies (Equation (2.3) or (2.4)). Soni et al. [2007] proposed a dual DisCSP formula-
tion, in which each agent’s single variable represents the joint strategies of her whole
neighborhood in the graph, including herself. In Section 3.7.4, we describe a novel
DisCSP formulation that has better privacy properties.

2.3 Complete DisCSP Algorithms

Historically, the first algorithms proposed were DisCSP algorithms that were complete,
i.e. were guaranteed to find a feasible solution when there exists one.

2.3.1 ABT: Asynchronous Backtracking

The very first algorithm was Asynchronous Backtracking (ABT) [Yokoo et al., 1992],
which is a distributed, asynchronous adaptation of the traditional backtracking search
that has been applied successfully to centralized CSPs. In ABT, each variable x ∈ X is
assigned a fixed priority p(x) ∈ N, which defines a total order on the variables. Each
agent a(x) is then responsible for enforcing the constraints that involve x and only
higher-priority neighbors (Algorithm 1, line 2). Each agent performs assignments to its
variables concurrently and asynchronously (lines 4 and 15), notifying its lower-priority
neighbors of its decisions using OK? messages (lines 5 and 16).

Lower-priority agents that receive these OK? messages update their agent views of
the current assignments to their higher-priority neighbors (line 9), and attempt to
find assignments to their own variables that satisfy the constraints they share with
higher-priority neighbors, based on their agent views (lines 13 to 16). If no such
feasible assignment is found (line 17), the agent initiates a backtrack, by responding
with NOGOOD messages that contain reasons for the backtrack. Each such nogood,
i.e. inconsistent partial assignment to higher-priority variables (line 19), is sent to
the lowest-priority variable involved (lines 21 to 23), except if the empty nogood is
generated, in which case the DisCSP has been found infeasible (line 20). When it
receives a NOGOOD message, an agent converts the nogood into a new constraint that
it must enforce (lines 10 to 12).

On feasible DisCSP instances, the algorithm terminates when all agents are idle, which

19

Chapter 2. Preliminaries

Algorithm 1 The ABT algorithm for variable x.
Require: a fixed, injective, priority function p : X → N of the variables

1: // Join all constraints involving x and only higher-priority variables:
2: cx(x, ·)← ∧

c∈{c′∈C | p(x)=miny∈scope(c′) p(y)} c(x, ·)

3: // Initialize value for x:
4: x← value x∗ from x’s domain Dx chosen according to some heuristic
5: Send message (OK?, x = x∗) to all lower-priority neighbors ∈ Nx

6: loop
7: Wait for a message M
8: if M = (OK?, y = y∗) then
9: y ← y∗

10: else if M = (NOGOOD, {y1 = yc1, . . . , yk = yck}) then
11: cx(x, ·)← cx(x, ·) ∧ (y1 6= yc1 ∨ . . . ∨ yk 6= yck) // record the nogood
12: Nx ← Nx ∪ {y1, . . . , yk} // add links if they do not already exist

13: if cx(x, ·) = false then // conflict; try to find a new consistent value for x
14: if ∃x∗ ∈ Dx | cx(x∗, ·) = true then
15: x← x∗ ∈ Dx chosen according to some heuristic
16: Send message (OK?, x = x∗) to all lower-priority neighbors ∈ Nx

17: else // backtrack
18: // All subsets of higher-priority variables with inconsistent values:
19: N c

x ← {{y1, . . . , yk} ⊂ scope(cx)\{x} | cx(y1 = y∗1 , . . . , yk = y∗k) ≡ false}
20: if ∅ ∈ N c

x then broadcast message (INFEASIBLE) and exit
21: for {y1, . . . , yk} ∈ N c

x do
22: ymin ← arg miny=y1,...,yk p(y) // lowest-priority variable
23: Send message (NOGOOD, {y1 = y∗1, . . . , yk = y∗k}) to ymin

has to be detected by a separate algorithm such as the one in [Chandy and Lamport,
1985]. The processing of nogoods can require adding links to the constraint graph
(line 12); some later work has looked into removing this requirement, such as in the
Distributed Dynamic Backtracking (DisDB) [Bessiere et al., 2001], ABTnot [Bessiere
et al., 2005] and Distributed Backtracking with Sessions (DBS) [Monier et al., 2009]
algorithms. The Distributed Forward Checking (DisFC) algorithm [Brito and Meseguer,
2003] is another later variant of ABT that addresses the issue of privacy; privacy-related
discussions are postponed to Section 3.2.2.

2.3.2 AWC: Asynchronous Weak Commitment

Asynchronous Weak Commitment (AWC) [Yokoo, 1995] introduces two performance
improvements to ABT. First, when an agent has a choice between multiple feasible
values for its variable (Algorithm 1, line 15), it chooses the one that satisfies as many
constraints with lower-priority agents as possible. In other words, the value ordering

20

2.3. Complete DisCSP Algorithms

heuristic used in AWC is the min-conflict heuristic.

Second, each time a backtrack is initiated, the total variable order is revised so as
to assign the highest priority to the initiator variable following Algorithm 2, which
replaces lines 19 to 23 in Algorithm 1. This is achieved by allowing the priority values p :

X → N to change dynamically; the updated values of p are communicated via the OK?
messages. This dynamic variable ordering mechanism makes it possible to quickly
revise a “hopeless" assignment to a high-priority variable, while ABT would only revise
it after having formally proven that it is hopeless (i.e. it cannot lead to any feasible
solution), which can require an exponential amount of computation.

Algorithm 2 Backtracking in AWC.
1: NGcx ← {{y1 = y∗1 , . . . , yk = y∗k} ⊂ scope(cx)\{x} | cx(y1 = y∗1 , . . . , yk = y∗k) ≡ false}
2: if ∅ ∈ NGcx then broadcast message (INFEASIBLE) and exit
3: ifNGcx ∩NGsentx = ∅ then
4: NGsentx ← NGsentx ∪NGcx
5: for nogood ∈ NGcx do send message (NOGOOD, nogood) to all yi ∈ nogood
6: p(x)← 1 + maxy p(y)
7: x← x∗ chosen according to the min-conflict heuristic
8: Send message (OK?, x = x∗, p(x)) to all lower-priority neighbors ∈ Nx

While AWC was shown to outperform ABT empirically on small problems, contrary to
ABT, the AWC algorithm must record all nogoods (Algorithm 2, line 4), which results
in a worst-case exponential space complexity. Silaghi et al. [2001] later proposed a
modification to ABT, called ABT with asynchronous Reordering (ABTR), which imple-
ments a reordering mechanism comparable to that of AWC, but with polynomial space
complexity.

2.3.3 AAS: Asynchronous Aggregation Search

Departing from previous conventions, Silaghi et al. [2000] proposed to look at a DisCSP
variant in which the variables are public, and the constraints are private (see Sec-
tion 3.2.2), and introduced the Asynchronous Aggregation Search (AAS) algorithm.
This algorithm proceeds as ABT, except that instead of reasoning about assignments
of single values to single variables in the form x = x0, AAS reasons about aggre-
gates, which are assignments of multiple values to multiple variables, in the form
(x, y) ∈ {x0, x1}

⊗{y0, y1}. To detect termination, AAS uses a special system agent that
is responsible for keeping track of whether the proposals contained in OK? messages
have been accepted or not. Silaghi et al. investigated three variants of AAS that differ in
the number of nogoods they record; the version that records all nogoods (AAS-2) was
shown to outperform ABT, at a cost of a worst-case exponential memory complexity.

21

Chapter 2. Preliminaries

Algorithm 3 The AFC algorithm for variable xi.
Require: a fixed, known, linear order on the variables: x1 � . . . � xn

1: // Join all constraints involving xi and only previous variables:
2: ci(xi, ·)←

∧
c∈{c′∈C | xi∈scope(c′) ∧ ∀y∈scope(c′), y�xi} c(xi, ·)

3: ti ← 0 // timestamp
4: oki ← true // whether my current agent view is consistent
5: D′i ← Di // a copy of xi’s domain Di

6: if i = 1 then // the first variable x1 starts the search
7: x1 ← choose x∗1 ∈ D′1
8: Send messages (CPA, t1, (x∗1)) to x2 and (FC, t1, (x∗1)) to all xi>1

9: for each received message M do
10: if M = (CPA or BACK, t, (x∗1, . . . , x

∗
i−1)) then // look for a value for xi

11: if oki = false then // my current agent view is inconsistent
12: if x1 = x∗1 ∧ . . . ∧ xi−1 = x∗i−1 then BACKTRACK() and continue
13: else oki ← true
14: if M is of type BACK then D′i ← D′i\{x∗i } // xi = x∗i is inconsistent
15: else (x1, . . . , xi−1)← (x∗1, . . . , x

∗
i−1) and D′i ← Di

16: ASSIGNCPA()

17: else if M = (FC, t > ti, (x
∗
1, . . . , x

∗
k)) then // perform forward checking

18: D′i ← Di

19: if oki = false and x1 6= x∗1 ∨ . . . ∨ xk 6= x∗k then oki ← true
20: if oki = true then
21: (x1, . . . , xk)← (x∗1, . . . , x

∗
k) and D′i ← D′i\{x∗i ∈ D′i | ci(x∗i) ≡ false}

22: if D′i = ∅ then send message (NOT_OK, ti, (x∗1, . . . , x
∗
k)) to all xj>k

23: else if M = (NOT_OK, t, (x∗1, . . . , x
∗
k)) then // failed forward checking

24: if x1 = x∗1 ∧ . . . ∧ xk = x∗k or t > ti then
25: (x1, . . . , xk, xk+1, . . . , xn)← (x∗1, . . . , x

∗
k,⊥, . . . ,⊥) and oki ← false

26: ti ← max{ti, t} // keep timestamp up to date

Procedure: BACKTRACK()
27: if i > 1 then
28: oki ← false and jmin ← min{j ∈ [1, n] | ci(x∗1, . . . , x∗j ,⊥, . . .⊥) ≡ false}
29: (x1, . . . , xjmin , xjmin+1, . . . , xn)← (x∗1, . . . , x

∗
jmin

,⊥, . . . ,⊥)
30: Send message (BACK, tj , (x∗1, . . . , x

∗
jmin−1

)) to xjmin

31: else broadcast message (INFEASIBLE) and exit

Procedure: ASSIGNCPA()
32: xi ← x∗i ∈ D′i such that ci(x∗i , ·) = true
33: if there exists such a x∗i then
34: if i < n then
35: ti ← ti + 1
36: Send (CPA, ti, (x∗1, . . . , x

∗
i)) to xi+1 and (FC, ti, (x∗1, . . . , x

∗
i)) to all xj>i

37: else broadcast message (SOLUTION, x∗1, . . . , x
∗
n) and exit

38: else BACKTRACK()

22

2.3. Complete DisCSP Algorithms

2.3.4 AFC: Asynchronous Forward Checking

All algorithms mentioned so far were fully asynchronous algorithms; Asynchronous For-
ward Checking (AFC) [Meisels and Zivan, 2003, 2007] is, contrary to what its name might
suggest, the first successful complete DisCSP algorithm that performs synchronous
search; only the forward checking computation is done asynchronously. Given a total
ordering of variables, the first variable starts the synchronous search by choosing a
value for itself, and communicates this tentative decision to the second variable via a
CPA (Current Partial Assignment) message (Algorithm 3, lines 6 to 8). It also sends the
current CPA to all other subsequent variables via an FC (Forward Checking) message.

These FC messages tell all other agents to temporarily remove from their respective
variables’ domains the values that have already become inconsistent, even if not all
previous variables have been instantiated yet (line 21). If this results in a variable’s do-
main becoming empty, the agent notifies all unassigned variables of the inconsistency
via NOT_OK messages (line 22). When receiving such a notification (lines 23 to 26),
the agents record the fact that their current agent views are inconsistent, unless the
NOT_OK message is obsolete and refers to a branch of the search tree that has already
been abandoned; obsolescence is detected using a timestamp mechanism.

The single agent that receives the current CPA message extends it with a consistent
assignment to its own variable (lines 15 to 16), unless no such consistent assignment
exists (line 38) or the agent had previously been notified by a NOT_OK message that
the current CPA will eventually become inconsistent (lines 11 to 12). In these two
cases, the agent initiates a backtrack by sending a BACK message to the last variable
in the smallest inconsistent partial assignment (lines 27 to 30), effectively performing
backjumping. AFC was shown to outperform ABT and DisDB. Ezzahir et al. [2009]
later proposed two performance improvements to AFC: NoGood-based AFC (AFC-ng),
and Asynchronous Inter-Level Forward-Checking (AILFC), which runs AFC-ng on a
pseudo-tree ordering of the variables (see Section 2.4.2).

2.3.5 APO: Asynchronous Partial Overlay

An unusual member in the family of DisCSP algorithms is the Asynchronous Partial
Overlay (APO) algorithm [Mailler and Lesser, 2003]. In this algorithm, some agents
are designated as mediators, which are made responsible for partially centralizing
sub-problems of the full DisCSP. Grinshpoun and Meisels [2008] later showed that
the algorithm was actually incomplete, and that its complete version, CompAPO, had
a tendency to centralize most of the DisCSP into one mediator, and was empirically
clearly outperformed by ABT and AFC.

23

Chapter 2. Preliminaries

2.3.6 ConcDB: Concurrent Dynamic Backtracking

Also departing from previous work on DisCSP, Zivan and Meisels [2004, 2006] proposed
to exploit the inherent parallel computing capabilities of the agents by running mul-
tiple search processes in parallel, on non-intersecting sub-problems of the overall
DisCSP. They showed that their resulting Concurrent Dynamic Backtracking (ConcDB)
algorithm outperformed ABT.

2.3.7 MPC-DisCSP4: Secure Multiparty Computation

An even more exotic DisCSP algorithm is MPC-DisCSP4 [Silaghi, 2005a], which, like
AAS, assumes public variables and private constraints, and then applies secure Multi-
Party Computation (MPC) to solve the DisCSP, while providing privacy guarantees.
There also exists an extension of this algorithm to DisWCSPs with bounded costs, in
the form of MPC-DisWCSP4 [Silaghi and Mitra, 2004; Silaghi, 2005a]. The discussion of
MPC-Dis(W)CSP4 is delayed to Section 3.2.2.

2.4 Complete DCOP Algorithms

This section now presents complete algorithms that have been proposed in the litera-
ture to solve DCOPs.

2.4.1 SynchBB: Synchronous Branch and Bound

Probably the simplest complete DCOP algorithm that exists is Synchronous Branch and
Bound (SynchBB1) [Hirayama and Yokoo, 1997], which is a straightforward distributed
adaptation of the well-known centralized Branch and Bound mechanism. Originally a
Max-DisCSP algorithm, Meisels [2008] showed how it can be generalized to a DCOP
algorithm (still assuming non-negative costs), and how the resulting Algorithm 4
compares with the (later) AFC algorithm. Like in AFC, the variables are arranged along
a total order, and the agents pass around a single CPA message (which Hirayama
and Yokoo called a PATH message) that includes the current partial assignment to the
highest-priority variables, and, additionally, the current associated cost (line 14). When
a full assignment has been generated by the last agent (line 23), its corresponding total
cost is broadcasted to all other agents (line 24), which can use this cost as an upper
bound on the optimal cost (lines 5 and 12), so as to trigger a backtrack whenever a
partial assignment is found to be sub-optimal (lines 18 and 30).

1Hirayama and Yokoo initially called their algorithm SBB, but almost all recent literature consistently
refers to it as SynchBB.

24

2.4. Complete DCOP Algorithms

Algorithm 4 The SynchBB algorithm for variable xi.
Require: a fixed, known, linear order on the variables: x1 � . . . � xn

1: // Join all constraints involving xi and only previous variables:
2: ci(xi, ·)←

∧
c∈{c′∈C | xi∈scope(c′) ∧ ∀y∈scope(c′), y�xi} c(xi, ·)

3: D′i ← Di // a copy of xi’s domain Di

4: c−i ← 0 // cost of the CPA up to and including xi−1

5: c∗ ←∞ // cost of the best solution found so far

6: if i = 1 then // the first variable x1 starts the search
7: x1 ← first x∗1 ∈ D′1 such that c1(x∗1) <∞
8: if there exists such a x∗1 then send message (CPA, (x∗1), c1(x∗1)) to x2

9: else broadcast message (INFEASIBLE)

10: for each received message M do
11: if M = (UB, (x∗1, . . . , x

∗
n), c) then

12: c∗ ← c and record (x∗1, . . . , x
∗
n) as the best solution found so far

13: continue

14: if M = (CPA, (x∗1, . . . , x
∗
i−1), c) then

15: D′i ← Di and (x1, . . . , xi−1)← (x∗1, . . . , x
∗
i−1) and c−i ← c

16: else if M = (BACK) then D′i ← D′i\{x∗i }
17: // Look for a (better) value for xi
18: xi ← first x∗i ∈ D′i such that c−i + ci(x

∗
i , ·) < c∗

19: if there exists such a x∗i then
20: if i = n then // last variable
21: xn ← x∗n = arg minx′n∈D′n{cn(x′n, ·)}
22: c∗ ← c−n + cn(x∗n, ·)
23: Record (x∗1, . . . , x

∗
n) as the best solution found so far

24: Broadcast message (UB, (x∗1, . . . , x
∗
n), c∗)

25: if c∗ = 0 then broadcast message (TERMINATE)
26: else send message (BACK) to xn−1

27: else send message (CPA, (x∗1, . . . , x
∗
i), c

−
i + ci(x

∗
i , ·)) to xi+1

28: else
29: if i = 1 then broadcast message (TERMINATE)
30: else send message (BACK) to xi−1

2.4.2 ADOPT: Asynchronous Distributed OPTimization

The first asynchronous, complete algorithm for DCOP was Asynchronous Distributed
OPTimization (ADOPT) [Modi et al., 2005]. One of the key, novel features in ADOPT is
that it does not use a total ordering of variables; instead, variables are ordered along a
pseudo-tree.

25

Chapter 2. Preliminaries

Pseudo-tree Generation

The ADOPT algorithm first organizes the decision variables in the DCOP along a
hierarchical structure called a pseudo-tree, defined a follows.

Definition 7 (pseudo-tree). A pseudo-tree is a generalization of a tree, in which a node
is allowed to have additional links (called back-edges) with remote ancestors (called
pseudo-parents) and with remote descendants (called pseudo-children), but never with
nodes in other branches of the tree.

Such variable hierarchies make it possible to use a divide-and-conquer approach to
solving the DCOP, by splitting the responsibility for enforcing constraints (and hereby,
the computation load) among agents. Following this approach, a given agent will
only have to enforce constraints that involve its variables and higher variables in the
hierarchy; the responsibility for enforcing the other constraints is delegated to its
neighboring agents lower in the hierarchy. Furthermore, compared to simpler, linear
variable orderings, pseudo-trees have the advantage of better exploiting the topological
structure of the problem: two loosely coupled parts of the DCOP will correspond to
two different branches in the pseudo-tree, on which computation will be performed in
parallel.

A possible pseudo-tree arrangement of the constraint graph in Figure 2.1 is illustrated
in Figure 2.8. This pseudo-tree naturally decomposes the original problem into two,
loosely coupled subproblems, corresponding to the two branches. The dashed edges
represent back-edges with remote ancestors (i.e. pseudo-parents) in the pseudo-tree.

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

x1 → x4

x2

x4 R B G

R true true true

B true true false

G true false true

x3 → x2

x2 R B G

true false true

x5 → x3

x3

R true

B true

G false

�∈ {B, R}

x2

x3

x5 x4

x1

x4 → x3

x2

x3 R B G

R true false false

B true true true

G false true true

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

�∈ {B, R}

x2

x3

x5 x4

x1

x2 x3 x5 x4 x1

x5 → x3

x3

R 0
B 0
G 1

x1 → x4

x2

x4 R B G

R 0 0 0
B 0 0 1
G 0 1 0

x4 → x3

x2

x3 R B G

R 0 1 0
B 0 0 0
G 0 0 0

x3 → x2

x2 R B G

0 1 0

x2

x3

x5 x4

x1

Figure 2.8: The problem in Figure 2.1 and a possible pseudo-tree.

26

2.4. Complete DCOP Algorithms

Root Election Most of the literature on pseudo-tree-based algorithms for DCOP
completely ignores the issue of selecting a root variable for the pseudo-tree. Algo-
rithm 5 describes a simple procedure to achieve this, based on a viral propagation of
variable scores. Initially, each variable is assigned a score (line 1) that can be chosen
following any heuristic. The most common heuristic is the most connected heuristic,
which assigns to each variable its number of neighbors. At the end of the algorithm,
each variable discovers the maximum score, and the variable whose score is equal to
this value is chosen as the root of the pseudo-tree (line 7). Score tie breaking should be
performed based on the variable name, to make sure that only one variable has the
highest score. Furthermore, to guarantee that one and only one variable is elected, the
agents require the knowledge of an upper bound φmax on the diameter of the constraint
graph, i.e. the maximum distance (in number of edges) between any pair of variables.
If the constraint graph is disconnected, this algorithm will elect one root per connected
component of the graph.

Algorithm 5 Root election algorithm for variable x.
Require: upper bound φmax on the constraint graph diameter

1: scorex ← heuristic score for variable x
2: max← scorex
3: for φmax times do
4: Send max to all neighbors
5: Get max1 . . .maxk from all neighbors
6: max← max(max,max1, . . . ,maxk)

7: if max = scorex then x is the elected root

Constraint Graph Traversal Once it has been chosen, the root variable then initiates
a distributed, depth-first traversal of the constraint graph, with itself as the root. This
is done using Algorithm 6, originally proposed by Cheung [1983]. During this traversal,
each variable x maintains the following variables:

• parentx is x’s parent in the pseudo-tree (if x is not the elected root);

• childrenx is the list of x’s children;

• pseudo_parentsx is the list of x’s pseudo-parents;

• pseudo_childrenx is the list of x’s pseudo-children;

• openx is the list of x’s neighboring variables that remain to be visited.

Variable x heuristically chooses a neighbor y0 as its first child (line 4) and sends it a
CHILD message (line 5). The most common heuristic is again the most connected

27

Chapter 2. Preliminaries

Algorithm 6 Pseudo-tree generation algorithm for variable x
1: if x has at least one neighbor then
2: if x is the root then
3: openx ← all neighbors of x
4: Heuristically remove a neighbor y0 from openx and add it to childrenx
5: Send a CHILD message to y0

6: loop
7: Wait for an incoming message of type type from a neighbor yi

8: if openx = ∅ then // first time x is visited
9: openx ← all neighbors of x except yi

10: parentx ← yi

11: else if type = CHILD and yi ∈ openx then
12: Remove yi from openx and add it to pseudo_childrenx
13: Send PSEUDO message to yi
14: next

15: else if type = PSEUDO then
16: Remove yi from childrenx and add it to pseudo_parentsx

17: // Forward the CHILD message to the next open neighbor:
18: Heuristically choose a neighbor yj ∈ openx
19: if there exists such a yj then
20: Remove yi from openx and add it to childrenx
21: Send a CHILD message to yj
22: else
23: if x is not the elected root then // backtrack
24: Send a CHILD message to parentx
25: return

heuristic, which picks the neighbor with the highest degree. Notice that implement-
ing this heuristic requires that each variable preliminarily send its degree to all its
neighbors.

When variable x receives a message from a neighbor yi (line 7), if it is the first message
received, then the sender yi is identified as the parent of x (lines 8 to 10). Else, if it is a
CHILD message received from an open neighbor, then yi is identified as a pseudo-child,
which variable x reveals to yi by responding with a PSEUDO message (lines 11 to 16).
The CHILD message is then recursively passed from open neighbor to open neighbor,
until no open neighbor remains (lines 18 to 22).

When variable x has no more open neighbors, it initiates a traversal backtrack by
returning a CHILD message to its parent (lines 23 to 24). The algorithm terminates
when the root variable receives a CHILD message from a child and has no more open
neighbors.

28

2.4. Complete DCOP Algorithms

Complexity Analysis The root election algorithm involves exchanging O(ndφmax) ∈
O(n3) messages, where n is the number of decision variables, d is the degree of the
constraint graph, and φmax is an upper bound on its diameter. Each message only
contains a score (and a destination variable). Once the root variable has been elected,
the constraint graph traversal algorithm exchanges O(n) tokens: one CHILD token
down and up each tree-edge, plus one CHILD token up and one PSEUDO token down
each back-edge.

Asynchronous Search

The agents then asynchronously perform best-first search, higher-priority agents
sending down candidate assignments in VALUE messages, and lower-priority agents
responding with COST messages that contain lower and upper bounds on costs.
THRESHOLD messages are also exchanged to reduce redundant search. ADOPT was
shown to outperform SynchBB in terms of number of communication cycles; however,
it has the tendency to exchange a very large number of messages (exponential in the
depth of the pseudo-tree). Various performance improvements to ADOPT have since
been proposed, such as ADOPT-ng [Silaghi and Yokoo, 2006] and BnB-ADOPT [Yeoh
et al., 2008].

2.4.3 OptAPO: Optimization by Asynchronous Partial Overlay

Most of the DCOP algorithms subsequently proposed are optimization variants of
existing DisCSP algorithm; this is the case of OptAPO [Mailler and Lesser, 2004] (later
made complete as CompOptAPO by Grinshpoun and Meisels [2008]), which, as the
same suggests, is a generalization of APO. The OptAPO algorithm was shown to outper-
form ADOPT, but has the same tendency as APO to centralize most of the problem into
one mediator agent.

2.4.4 DPOP: Dynamic Programming Optimization Protocol

Petcu and Faltings [2005b] introduced the Dynamic Programming Optimization Proto-
col (DPOP), which, contrary to most other complete DCOP algorithms generally based
on search, performs dynamic programming along a pseudo-tree variable ordering.
DPOP is an instance of the general bucket elimination scheme by Dechter [2003],
which is adapted for the distributed case. Once a pseudo-tree has been constructed,
DPOP runs in two phases: 1) variables first propagate aggregated costs (or utilities) up
the pseudo-tree; and 2) variables then propagate decisions down the pseudo-tree.

29

Chapter 2. Preliminaries

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

�∈ {B, R}

x2

x3

x5 x4

x1

x2 x3 x5 x4 x1

x5 → x3

x3

R 0
B 0
G 1

x1 → x4

x2

x4 R B G

R 0 0 0
B 0 0 1
G 0 1 0

x4 → x3

x2

x3 R B G

R 0 1 0
B 0 0 0
G 0 0 0

x3 → x2

x2 R B G

0 1 0

Figure 2.9: DPOP’s pseudo-tree and UTIL messages on the problem in Figure 2.8.

Algorithm 7 DPOP’s UTIL propagation for variable x
1: // Join local constraints:
2: px ← parentx
3: m(x, px, ·)← Σc∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo_childrenx)=∅}c(x, ·)
4: // Join with received messages:
5: for each yi ∈ childrenx do
6: Wait for the message (UTIL, mi(x, ·)) from yi
7: m(x, px, ·)← m(x, px, ·) +mi(x, ·)
8: // Project out x:
9: if x is not the root variable then

10: x∗(px, ·)← arg minx {m(x, px, ·)}
11: m(px, ·)← minx {m(x, px, ·)}
12: Send the message (UTIL, m(px, ·)) to px
13: else x∗ ← arg minx {m(x)} // m(x, px, ·) actually only depends on x

UTIL Propagation

During the first UTIL propagation phase (Algorithm 7), messages travel up the pseudo-
tree, propagating information about the aggregated optimal cost. Each variable x first
computes the sum (also called the join) of the constraints involving x (line 3). However,
since a given constraint may involve multiple variables, but must be counted only
once in the overall sum of all constraints that is being minimized, variable x ignores all
constraints that involve at least one descendant of x in the pseudo-tree. In other words,
the responsibility of enforcing a given constraint is assigned to its lowest variable in
the pseudo-tree (like in ADOPT).

Variable x then waits for the reception of a UTIL message from each of its children (if

30

2.4. Complete DCOP Algorithms

any), and joins them all together with its constraints (lines 4 to 7). Finally, variable x
projects itself out of the join (lines 8 to 13), and sends the resulting cost to its parent px.
This cost corresponds to the minimum achievable cost for the whole subtree rooted
at x, as a function of the values for px and possibly also other variables higher in the
pseudo-tree. More precisely, the set of all variables in the UTIL message sent by x
is called its separator , and includes x’s parent and pseudo-parents, as well as all of
x’s descendants’ pseudo-parents that are above x in the pseudo-tree. Variable x also
records its optimal value x∗(px, ·), which is a function of its separator.

Consider for instance the message sent by agent a(x5) to its parent agent a(x3) in Fig-
ure 2.9. This message is the result of the projection of variable x5 out of the conjunction
of x5’s two (soft) constraints x5 6= x3 and x5 6∈ {B,R}, and summarizes a(x5)’s minimal
number of constraint violations, as a function of the ancestor variable x3. More gener-
ally, each message sent by a variable x expresses the minimal number of constraint
violations for the entire subtree rooted at x, as a function of x’s separator. For instance,
the message x4 → x3 contains the minimal number of constraint violations for the
entire subtree rooted at x4, as a function of x4’s separator {x2, x3}. Notice that the
separator of a variable x can contain variables that are not neighbors of x, just like x2 is
in x4’s separator because a descendent of x4 has a constraint with x2. Upon receiving
the messages x5 → x3 and x4 → x3, agent a(x3) joins them (i.e. adds them up) with its
constraint x3 6= x2. Variable x3 is then projected out of the resulting joint table, which
produces the message x3 → x2.

Conceptually, the DPOP algorithm can be seen as a method of reformulating the
computation of minx1,...,xn{c1(·) + . . . + cm(·)} by appropriately distributing the min
over the sum. For instance, the pseudo-tree in Figure 2.9 corresponds to reformulating
the following computation:

min
x1...x5

{(x1 6= R) + (x1 6= x2) + (x1 6= x4) + (x2 6= x3) + (x3 6= x4) + (x3 6= x5) + (x4 6= B) + (x5 = G)}

into the following tree of operations:

min
x2

min
x3

(x2 6= x3) +

 minx5 {(x3 6= x5) + (x5 = G)}
+

minx4 {(x3 6= x4) + (x4 6= B) + minx1 {(x1 6= R) + (x1 6= x2) + (x1 6= x4)}}

 .

VALUE Propagation

At the end of the UTIL propagation phase, the root variable has obtained its optimal
value, which is not a function of any other variable since its separator is empty (it
is the highest variable in the pseudo-tree). It sends this optimal value to each of its
children through VALUE messages. Recursively, each variable x, when receiving the
message V ALUEpx→x from its parent px, is able to look up its corresponding optimal
value x∗ computed during the UTIL propagation phase. To each of its children yi,

31

Chapter 2. Preliminaries

variable x sends not only x∗, but also the optimal values for all the variables in yi’s
separator, which are contained in the VALUE message it received. Optimal decisions
are hereby propagated down the pseudo-tree, until all variables have been assigned
optimal values.

Complexity Analysis

The complexity bottleneck of DPOP in terms of amount of information exchanged lies
in the UTIL propagation phase. The algorithm only exchanges (n− 1) UTIL messages
(each variable sends one to its parent, except the root), but these messages can be
exponentially large. More precisely, the largest UTIL message contains O(Dwi

max) cost
values, where Dmax is the size of the largest domain, and wi is the induced width of the
pseudo-tree used, which is bounded above by the number of variables n, and bounded
below by the treewidth w of the constraint graph.

The VALUE propagation phase also exchanges (n− 1) VALUE messages, but each con-
tains at most wi optimal assignments to variables. Therefore, overall, the complexity of
DPOP in terms of information exchanged is Ω(nDw

max) and O(nDwi
max).

DPOP was shown to largely outperform ADOPT in runtime and number of messages;
however, contrary to ADOPT, its space complexity is exponential, which makes it
inapplicable to DCOPs with large treewidths. A non-denumerable number of variants
of DPOP have been proposed, including a memory-bounded version (MB-DPOP)
[Petcu and Faltings, 2007]. Other authors have also proposed generalizations of DPOP
using different variable orderings; this includes the Distributed Cross-edged Pseudo-tree
Optimization Procedure (DCPOP) [Atlas and Decker, 2007], Distributed Cluster Tree
Elimination (DCTE) [Brito and Meseguer, 2010], and Action-GDL [Vinyals et al., 2010b].

2.4.5 AFB: Asynchronous Forward Bounding

Asynchronous Forward Bounding (AFB) [Gershman et al., 2006] is an optimization vari-
ant of AFC, in which search is performed in a synchronous manner like in SynchBB, but
forward bounding is performed in parallel (like forward checking in AFC). Gershman
et al. showed that, when using a lexicographic variable ordering, AFB outperforms
SynchBB and ADOPT in terms of Non-Concurrent Constraint Checks (NCCCs) [Ger-
shman et al., 2008]. However, we have recently shown that, when smarter variable
ordering heuristics are used, such as the min-width heuristic, AFB is outperformed by
SynchBB on dense problems, and by both ADOPT and SynchBB on sparse problems
[Olteanu et al., 2011]. Variants of AFB have also been proposed, such as to include
conflict-directed back-jumping (AFB-BJ) [Gershman et al., 2009].

32

2.5. Incomplete DCOP Algorithms

2.4.6 NCBB: No-Commitment Branch and Bound

No-Commitment Branch and Bound (NCBB) [Chechetka and Sycara, 2006] is an algo-
rithm that, like ADOPT and DPOP, is based on a pseudo-tree ordering of the variables.
Like ADOPT, it is also based on search; however, contrary to ADOPT, in NCBB a vari-
able x that has multiple children in the pseudo-tree may communicate a different
candidate assignment x = x∗ to each of its children, which results in various branches
of the pseudo-tree exploring in parallel various, non-intersecting parts of the solution
space in parallel. The algorithm was shown to outperform ADOPT, but not DPOP;
however, contrary to DPOP, NCBB has a polynomial-space complexity. NCBB was also
later shown to be outperformed by BnB-ADOPT [Yeoh et al., 2008].

2.4.7 ConcFB: Concurrent Forward Bounding

A similar concept of multiple parallel searches over non-intersecting subspaces is used
in the Concurrent Forward Bounding (ConcFB) algorithm [Netzer et al., 2010], which
is an optimization variant of ConcDB, and was shown to outperform SynchBB and
BnB-ADOPT.

2.5 Incomplete DCOP Algorithms

The majority of incomplete algorithms are based on some form of local search, in
which agents start from an initial, probably infeasible (or sub-optimal) solution, and
attempt to repair it by making local changes, based only on local information from
their neighbors.

2.5.1 DBA: Distributed Breakout Algorithm

In the Max-DisCSP Distributed Breakout Algorithm (DBA) [Yokoo and Hirayama, 1996],
neighboring agents exchange information about how much the solution could be
improved if a local variable assignment were changed (Algorithm 8, lines 8 to 12). Like
in all local search algorithms, the agents can get stuck in local minima, in which no
single local change seems to improve the solution; to get out of such local optima,
DBA increases the weights of the current assignment (line 23), effectively casting the
Max-DisCSP into a DisWCSP. Hirayama and Yokoo [1997] later proposed the Itera-
tive Distributed Breakout (IDB) variant, and several more variants were proposed in
[Hirayama and Yokoo, 2005].

33

Chapter 2. Preliminaries

Algorithm 8 The DBA algorithm for variable x.
Require: a fixed, known, linear order on the variables: x1 � . . . � xn
Require: an upper bound φmax on the constraint graph diameter

1: cx(x, ·)← ∧
c∈{c′∈C | x∈scope(c′)} c(x, ·) // join all constraints involving x

2: x← random x∗ ∈ Dx

3: tx ← 0 // termination counter
4: Send message (OK?, x∗) to all neighbors

5: loop
6: // Wait for all OK? messages
7: Wait for one message (OK?, y∗) from each neighbor y and record y ← y∗

8: c−x ← cx(x, ·) // current local cost
9: x∗ ← arg minx′∈Dx cx(x′, ·) // candidate better value for x

10: ∆cx ← c−x − cx(x∗, ·) // cost improvement
11: if c−x > 0 then tx ← 0
12: Send message (IMPROVE, ∆cx, c

−
x , tx) to all neighbors

13: // Wait for all IMPROVE messages
14: for each message (IMPROVE, ∆c, c−, t) from a neighbor y do
15: tx ← min(tx, t)
16: if ∆c > ∆cx then
17: ∆cx ← −∆c < 0 // x must not move; not a quasi-local minimum
18: else if ∆c = ∆cx ∧ y � x then ∆cx ← −∆cx ≤ 0 // x must not move
19: c−x ← max(c−x , c

−)

20: // Send OK? messages
21: if c−x = 0 then tx ← tx + 1
22: if tx ≥ φmax then broadcast message (TERMINATE) and exit
23: if ∆cx = 0 then cx(x∗, ·)← cx(x∗, ·) + 1 // quasi-local min; increase weight
24: else if ∆cx > 0 then x← x∗ // x moves
25: Send message (OK?, x) to all neighbors

Algorithm 9 The DSA algorithm (replacement for lines 11 to 24 in Algorithm 8)
1: p← random number ∈ [0, 1]
2: if variant A ∧ ∆cx > 0 ∧ p < p∗ then x← x∗

3: if variant B ∧ (∆cx > 0 ∨ cx(x, ·) > 0) ∧ p < p∗ then x← x∗

4: if variant C ∧ p < p∗ then x← x∗

5: if variant D ∧ (∆cx > 0 ∨ (cx(x, ·) > 0 ∧ p < p∗)) then x← x∗

6: if variant E ∧ (∆cx > 0 ∨ p < p∗) then x← x∗

2.5.2 DSA: Distributed Stochastic Algorithm

The Distributed Stochastic Algorithm (DSA) [Fitzpatrick and Meertens, 2001] performs
local search on Max-DisCSPs in a similar manner, except that it has a different strategy
to escape from local minima. When no single local change seems to improve solution
quality, with some probability p∗ and in some circumstances which depend on the

34

2.5. Incomplete DCOP Algorithms

variant of the algorithm (A, B, C, D or E), the agents will perform a non-strictly-
improving change (Algorithm 9). Zhang et al. [2005] showed how both DSA and DBA
could be generalized to DCOPs, and compared their respective performances.

2.5.3 MGM: Maximum Gain Message

Maheswaran et al. [2004a] proposed the Maximum Gain Message (MGM) algorithm,
which is only a simplification of DBA, and then introduced the MGM-2 variant, in
which local search is performed over slightly larger neighborhoods, allowing two local
changes to occur simultaneously instead of only one in DBA and DSA. The resulting
algorithm generates 2-optimal solutions, according to the definition of k-optimality in
[Pearce and Tambe, 2007].

2.5.4 A-DPOP: Approximate DPOP

Departing from the local search approach, Petcu and Faltings [2005a] proposed the
A-DPOP algorithm, which is derived from the complete DPOP algorithm (Section 2.4.4)
by dropping dimensions from utility messages using approximate projections. Propa-
gating lower and upper bounds on utilities then makes it possible to obtain a posteriori
a guarantee on the maximum distance from optimality of the solution found.

2.5.5 The Max-Sum Algorithm

Instead of reasoning on the constraint graph of the DCOP, the Max-Sum algorithm
[Farinelli et al., 2008] introduced the novel (to the DCOP literature) idea of reasoning
on a factor graph representation of the problem, which is a bipartite graph in which
function nodes stand for constraints, and variable nodes stand for the decision variables
in the DCOP (Figure 2.10).

Each variable node x initiates the algorithm by sending to its neighboring function

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

�∈ {B, R}

x2

x3

x5 x4

x1

x2 x3 x5 x4 x1

x5 → x3

x3

R 0
B 0
G 1

x1 → x4

x2

x4 R B G

R 0 0 0
B 0 0 1
G 0 1 0

x4 → x3

x2

x3 R B G

R 0 1 0
B 0 0 0
G 0 0 0

x3 → x2

x2 R B G

0 1 0

x2

x3

x5 x4

x1

x1

x3 x5x2

x4

�=

�=

�=

�=

�=

�= R �= B

= G

Figure 2.10: The factor graph for the problem in Figure 2.8.

35

Chapter 2. Preliminaries

nodes a zero utility function of itself q : x → 0 (Algorithm 10, lines 3 to 6). Each
function node reacts by sending to each of its neighboring variable nodes x a utility
function r(x) that is equal to the marginal, maximum, global utility achievable, based
on the utility function q(z) it has received from each neighboring variable node z (lines
19 to 21). This makes it possible for each variable node to compute an assignment
to itself, as the one that maximizes an approximation of the marginal global utility
(line 10). This approximation is guaranteed to become exact after a certain number
of iterations if the factor graph is free of cycles. Farinelli et al. showed that Max-Sum
outperforms DSA.

Algorithm 10 The Max-Sum algorithm.
Procedure: executed by every variable node x

1: Cx ← {u′ ∈ C | x ∈ scope(u′)} // all contraints involving x
2: ux(x, ·)← ∧

u∈Cx u(x, ·) // join all constraints involving x
3: q : x→ 0
4: for u ∈ Cx do
5: r−u : x→∞ // last function received from function node u
6: Send function q(x) to function node u

7: loop
8: Wait for a function r(x) from a neighboring function node u
9: if r ≡ r−u then continue else r−u ← r

10: x∗ ← arg maxx′∈Dx

{∑
u∈Cx r

−
u (x′)

}
11: for u ∈ Cx do
12: q : x→∑

u′∈Cx\{u} r
−
u′(x)

13: q : x→ q(x)−∑x′∈Dx
q(x′) // rescale so that

∑
x∈Dx

q(x) = 0
14: Send function q(x) to function node u

Procedure: executed by every function node u
15: for x ∈ scope(u) do q−x : x→∞ // last function received from variable node x

16: loop
17: Wait for a function q(x) from a neighboring variable node x
18: if q ≡ q−x then continue else q−x ← q

19: for x ∈ scope(u) do

20: r : x→ maxy∈scope(u)\{x}

{
u(x, ·) +

∑
z∈scope(u)\{x} q

−
z (x)

}
21: Send function r(x) to variable node x

2.5.6 DaCSA: Divide and Coordinate Subgradient Algorithm

In the Divide and Coordinate Subgradient Algorithm (DaCSA) [Vinyals et al., 2010a],
agents iteratively interleave two stages: during the divide stage, the agents break down
the DCOP into a set of simpler, local subproblems, which they solve. Then, during the
coordinate stage, the agents exchange information on their disagreements about the

36

2.5. Incomplete DCOP Algorithms

solution. DaCSA exhibits an any-time behavior during which it continuously reports
solutions of improving quality, along with estimates of their distances to optimality.

2.5.7 DALO: Distributed Asynchronous Local Optimization

Finally, Kiekintveld et al. [2010] proposed the Distributed Asynchronous Local Opti-
mization (DALO) algorithm, which revisits the notion of k-optimality, and can also use
the new notion of t-distance optimality to produce approximate solutions. Recently,
Vinyals et al. [2011b] further extended DALO to also support their new concept of
region optimality.

37

3 Strong Privacy Guarantees in
DCOP

This chapter presents novel DCOP algorithms that provide strong guarantees on what
part of any given agent’s knowledge about the problem will provably not be revealed
to other agents by the messages exchanged during the algorithm execution. In other
words, we consider that agents are curious and we want to prevent them from dis-
covering critical pieces of information about other agents’ sub-problems. Still, we
assume that agents honestly follow the protocol. In this thesis, we do not investigate
byzantine behaviors or self-interested agents; instead, we focus on preventing private
information leaks to other agents by the algorithm. Such a cooperative behavior can
be justified by the fact that, if the algorithm fails to find a solution to the problem, all
agents lose (for instance, no feasible meeting schedule is found).

In Section 3.1, we first identify and formally define four types of information about the
problem that agents may want to protect. Section 3.2 then describes some related work
that, beyond the previous work already presented in Chapter 2, addressed in particular
the issue of privacy in multi-agent decision making. Sections 3.3 to 3.5 introduce three
novel DCOP algorithms1 that provide various levels of privacy guarantees, at various
costs in terms of complexity. Section 3.6 then formally proves these privacy guarantees,
and Section 3.7 finally reports empirical evaluations of the performance properties of
our algorithms against the state of the art.

3.1 Privacy Definitions

Before addressing what and how private information loss can be prevented in DCOP
algorithms, it is important to realize that there can exist private information that may
inevitably be leaked by any DCOP algorithm. This is the purpose of the following
definition.

1We have published these algorithms in the following workshop and conference papers: [Faltings et al.,
2008; Léauté and Faltings, 2009b; Léauté et al., 2010; Léauté and Faltings, 2011a].

39

Chapter 3. Strong Privacy Guarantees in DCOP

Definition 8 (Semi-private information). Semi-private information refers to informa-
tion about the problem and/or its solution that an agent might consider private, but
that can inevitably be leaked to other agents by their views of the chosen solution to the
DCOP. No distributed algorithm can guarantee the protection of such information.

In other words, everything a given agent can discover about other agents by making
inferences simply based on its initial knowledge of the problem and on the values its
variables take in the solution is considered semi-private information. For instance, in
a distributed graph coloring problem involving only two colors, each node can infer
the color of each of its neighbors from the color it was assigned in the chosen feasible
solution, regardless of the (correct) algorithm used to produce this solution. Excluding
semi-private information, we now distinguish four types of private information that
agents may desire to protect.

Definition 9 (Agent privacy). No agent should be able to discover the identity, or even
the existence of non-neighboring agents, i.e. agents it does not share constraints with. A
particular consequence of this type of privacy is that two agents should only be required
to communicate directly if they share a constraint.

Figure 3.1 recalls the graph coloring example introduced in Chapter 2. In this example,
agent privacy means for instance that agent a(x1) should not be able to discover the
existence and identities of agents a(x3) and a(x5). This type of privacy cannot be
protected by linear-ordering-based algorithms, because they may require, for instance,
that a(x1) and a(x3) directly exchange messages, while pseudo-tree-based algorithms
like DPOP do not suffer from this flaw. However, agent privacy might still be leaked by
the contents of messages; in this chapter we propose a method based on codenames to
fully protect agent privacy.

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

x1 → x4

x2

x4 R B G

R true true true

B true true false

G true false true

x3 → x2

x2 R B G

true false true

x5 → x3

x3

R true

B true

G false

�∈ {B, R}

x2

x3

x5 x4

x1

x4 → x3

x2

x3 R B G

R true false false

B true true true

G false true true

Figure 3.1: The graph coloring problem from Figure 2.1.

Definition 10 (Topology privacy). No agent should be able to discover the existence of
topological constructs in the constraint graph, such as nodes (i.e. variables), edges (i.e.
constraints), or cycles, unless it owns a variable involved in the construct.

In Figure 3.1, topology privacy means for instance that agent a(x1) should not discover
how many other neighbors x2 has besides itself. However, a(x1) might discover the

40

3.2. Related Work

existence of a cycle involving x1, x2 and x4. This is tolerated because x1 is involved in
this cycle, but a(x1) should not discover the length of the cycle (i.e. that x2 and x4 share
a neighbor). The use of a pseudo-tree ordering of the variables also has advantages in
terms of topology privacy, because an agent in one branch of the pseudo-tree will not
be able to discover anything about the topology of other branches.

Definition 11 (Constraint privacy). No agent should be able to discover the nature of a
constraint that does not involve a variable it owns.

In Figure 3.1, an example of a breach in constraint privacy would be if agent a(x1) were
able to discover that agent a(x4) does not want to be assigned the color blue. This is
the type of privacy that the DisCSP and DCOP literature mostly focuses on.

Definition 12 (Decision privacy). No agent should be able to discover the value that
another agent’s variable takes in the solution chosen to the problem (modulo semi-
private information).

In a distributed graph coloring problem like in Figure 3.1, this means that no agent
can discover the color of any neighbor (let alone any non-neighboring agent) in the
solution chosen to the problem. Notice that this is only possible in the presence of
at least three colors, otherwise each neighbor’s color is semi-private information, as
already mentioned.

3.2 Related Work

This section first presents some background knowledge about ElGamal homomorphic
encryption (Section 3.2.1), which we will make use of in the privacy-preserving algo-
rithms presented in this chapter. Section 3.2.2 then surveys the literature on privacy in
DisCSP and DCOP, and describes how our work relates to this previous work.

3.2.1 Cooperative ElGamal Homomorphic Encryption

Homomorphic encryption is a crucial building block of the privacy-preserving algo-
rithms introduced in this thesis. Encryption is the process by which a message — in
this section, a Boolean or an integer — can be turned into a cyphertext, in such a way
that decrypting the cyphertext to retrieve the initial cleartext message is impossible (or,
in this case, computationally very hard in the worst case) without the knowledge of the
secret encryption key that was used to produce the cyphertext. An encryption scheme
is said to be homomorphic if it is possible to perform operations on cyphertexts that
translate to operations on the initial cleartext messages, without the need to know the
encryption key. ElGamal encryption [Elgamal, 1985] is one such encryption scheme
that possesses this homomorphic property.

41

Chapter 3. Strong Privacy Guarantees in DCOP

Basic ElGamal Encryption of Booleans

We first describe how ElGamal encryption can be used to encrypt Booleans, in such a
way that carrying out the following two operations on encrypted Booleans is possible
without the knowledge of the secret encryption key:

• the AND of an encrypted and a cleartext Boolean;

• the OR of two encrypted Booleans.

ElGamal encryption is a homomorphic, public key cryptography system based on the
intractability of the Diffie-Hellman problem [Tsiounis and Yung, 1998], which proceeds
as follows. Let p be a safe prime of the form 2rt+ 1, where r is a large random number,
and t is a large prime. All numbers and all computations will be modulo p. Let g be
a generator of Z∗p, i.e. g is such that its powers cover [1, p− 1]. With p and g assumed
public knowledge, the ElGamal private key is a chosen random number x ∈ [1, p− 2],
and the associated public key is y = gx. A cleartext number m is then encrypted as
follows:

E(m) = (α, β) = (myr, gr) (3.1)

where r is an arbitrary random number chosen by the encryptor. The message is
decrypted by computing:

α

βx
=

myr

(gr)x
= m .

A useful feature of ElGamal encryption is that it allows to randomize an encrypted
value to generate a new encryption of the same value that has no similarity with the
original value. Randomizing E(m) in Eq. (3.1) yields

E2(m) = (αyr
′
, βgr

′
) = (myr+r

′
, gr+r

′
)

which still decodes to m.

To encrypt Booleans, we represent false by 1, and true by a value z 6= 1, which allows
us to compute the AND and OR operations:

• AND operation with a cleartext boolean:

E(m) ∧ false = E(1) E(m) ∧ true = E2(m)

• OR operation over two encrypted booleans:

E(m1) ∨ E(m2) = (α1 · α2, β1 · β2) = E(m1 ·m2) (3.2)

42

3.2. Related Work

Cooperative ElGamal Encryption

In the basic ElGamal encryption scheme previously described, decryption can be
performed in a single step, using the private key, which is a secret of the agent that
originally encrypted the message. However, it is also possible to perform ElGamal
encryption in such a way that all agents need to cooperate in order to perform de-
cryption. This is possible through the use of a compound ElGamal key (x, y) that is
generated cooperatively by all agents [Pedersen, 1991]:

Distributed Key Generation The ElGamal key pairs (xi, yi) of n agents can be com-
bined in the following fashion to obtain the compound key pair (x, y):

x = Σn
i=1xi y = Πn

i=1yi .

Distributed Decryption If each agent publishes its decryption share βxi , the message
can be decrypted as follows:

α

Πn
i=1β

xi
=

α

βx
= m .

Generalization to Integers

In the context of DisCSPs, being able to encrypt Booleans is sufficient, since all con-
straints assign either true (for feasibility) or false (for infeasibility) to variable as-
signments. Joining two feasibility values corresponds to computing their AND, and
projecting a variable corresponds to performing an OR operation. However, for this
technique to be applied to optimization problems, it is necessary to be able to encrypt
cost values (which we will assume are integers); joining then corresponds to a sum,
and projection to a min. This can be performed as follows [Yokoo and Suzuki, 2002].

We first restrict ourselves to integer cost values in [0, cmax] ∪ {+∞}, where cmax ∈ N is a
known upper bound on the cost of the optimal solution. A cost c is represented with
the following cleartext vector of size (cmax + 1):

c→ [

c︷ ︸︸ ︷
1, . . . , 1,

cmax+1−c︷ ︸︸ ︷
z, . . . , z] .

Cost values greater than cmax (including +∞) are represented with vectors full of 1’s,
and cannot be discerned from +∞.

Computing the min of encrypted costs is performed by applying the same operation as
in Eq. (3.2), element-wise on the vectors. The sum of an encrypted cost with a cleartext

43

Chapter 3. Strong Privacy Guarantees in DCOP

cost c is computed by shifting the vector by c as follows:

[E0, . . . , Ecmax] + c = [

c︷ ︸︸ ︷
E(1), . . . , E(1), E0, . . . , Ecmax−c] .

3.2.2 Privacy in DisCSP and DCOP

Before discussing what information may be leaked by a given DCOP algorithm, and
how to prevent it, it is important to clarify what information is assumed to be initially
known to each agent.

Initial Knowledge Assumptions

In this thesis, we use the following assumptions, which are currently the most widely
used in the DisCSP and DCOP literature.

1. Each agent a knows all agents that own variables that are neighbors of a’s vari-
ables, but does not know any of the other agents (not even their existence);

2. A variable and its domain are known only to its owner agent and to the agents
owning neighboring variables, but the other agents ignore the existence of the
variable;

3. A constraint is fully known to all agents owning variables in its scope, and no
other agent knows anything about the constraint (not even its existence).

Not all previous work on DisCSP and DCOP use exactly the same assumptions. Most
noticeably, all algorithms that involve exchanging messages between non-neighboring
agents relax Assumption 1: they assume that each agent knows the full list of agents.
The algorithms that use this modified assumption include all algorithms based on a
linear ordering of variables, with the exception of ABTnot [Bessiere et al., 2005]. These
algorithms violate agent privacy by design.

When it comes to Assumption 3, Brito and Meseguer [2003] introduced the notion of
Partially Known Constraints (PKCs), in which the scope of a constraint is known to all
agents involved, but the knowledge of its nature (i.e. which assignments are allowed
or disallowed) is distributed among these agents. This generalization actually does
not bring any additional expressiveness, since any PKC can be decomposed into a
number of constraints over copy variables, such that Assumption 3 holds. However,
the introduction of copy variables can be detrimental to decision privacy. Grubshtein
et al. [2009] later proposed the similar concept of asymmetric constraints, which can
also be reformulated as symmetric constraints over copy variables.

44

3.2. Related Work

Other previous work adopted a dual approach, assuming that variables are public and
known to all agents, but each constraint is known to only one agent, which does not
necessarily own any of the variables in its scope [Silaghi et al., 2000; Yokoo et al., 2002;
Silaghi, 2005a]. Silaghi [2005b] even proposed a framework in which the constraints are
secret to everyone. This dual approach has the disadvantage of necessarily violating
topology privacy, since all variables are public.

Measuring Constraint Privacy Loss

The majority of the literature on privacy in DisCSP and DCOP focuses on constraint
privacy. Metrics have been proposed to evaluate constraint privacy loss in various al-
gorithms, in particular in the context of distributed meeting scheduling, as in [Franzin
et al., 2004; Wallace and Freuder, 2005]. Maheswaran et al. [2006] designed a frame-
work called Valuation of Possible States (VPS) that they used to measure constraint
privacy loss in the OptAPO and SynchBB algorithms, and they considered the im-
pact of whether the problem topology is public or only partially known to the agents.
Greenstadt et al. [2006] also applied VPS to evaluate DPOP and ADOPT on meeting
scheduling problems, under the assumption that the problem topology is public. Doshi
et al. [2008] proposed to consider the cost of privacy loss in optimization problems, in
order to elegantly balance privacy and optimality.

Preventing Constraint Privacy Loss

Some previous work also proposed approaches to partially reduce constraint privacy
loss. For instance, Brito and Meseguer [2007] described a modification of the Dis-
tributed Forward Checking (DisFC) algorithm for DisCSPs in which agents are allowed
to lie for a finite time in order to achieve higher levels of privacy. However, most
search-based algorithms like DisFC exhibit a typical easy-hard-easy transition: for low
constraint tightness, they easily find a solution to the DisCSP, while for high tightness
they easily prove that no solution exist; the hard problems lie in the middle. Silaghi and
Mitra [2004] made the important observation that this phase transition is undesirable
when one’s goal is to protect privacy, because it makes it possible to make inferences
on the constraint tightness by observing the runtime or the amount of information
exchanged. To avoid this subtle privacy leak, one must either perform full exhaustive
search, which is the option chosen by Silaghi, or resort to dynamic programming (i.e.
use a variant of DPOP), which is the option we have chosen in this thesis. It is worth
noting that, while our contributions focus particularly on DPOP, much of this work
could be adapted and generalized to other DCOP algorithms.

The cryptographic technique of secret sharing [Shamir, 1979; Ben-Or et al., 1988] was
also applied in [Silaghi et al., 2006; Greenstadt et al., 2007] to lower constraint privacy in
DPOP, but the authors always assumed that the constraint graph topology was public

45

Chapter 3. Strong Privacy Guarantees in DCOP

knowledge. In fact, many techniques from cryptography have been applied to provide
strong guarantees on constraint privacy preservation in multi-agent decision making.
For instance, Yokoo and Suzuki [2002]; Yokoo et al. [2002, 2005] showed how a public
key encryption scheme can be used to solve DisCSPs using multiple servers, while
protecting both constraint privacy and decision privacy. Bilogrevic et al. [2011] solved
single-meeting scheduling problems using similar techniques, and one semi-trusted
server. In this thesis however, we only consider algorithms that do not make use of
third parties, as such third parties might not be available. Herlea et al. [2001] showed
how to use Secure Multiparty Computation (SMC)2 [Yao, 1986; Goldreich et al., 1987] to
securely schedule a single meeting, without relying on servers. The idea behind SMC is
for agents to collaboratively compute the value of a given, publicly known function on
private inputs, without revealing the inputs. In [Herlea et al., 2001], the private inputs
are each participant’s availability at a given time, and the function outputs whether
they are all available.

The MPC-Dis(W)CSP4 Algorithms

Silaghi and Mitra [2004]; Silaghi [2005a] applied a similar approach to output a solution
to general DisCSPs and DisWCSPs, where the private inputs are the agents’ constraint
valuations, and the function returns a randomly chosen solution. Their MPC-DisCSP4
algorithm for DisCSP is given in Algorithm 11. Each agent ai first creates a vector Fi
with one entry per candidate solution to the DisCSP, equal to 1 if the candidate solution
satisfies ai’s private constraints, and to 0 otherwise (lines 1 to 4). To reduce the size ofFi,
the candidate solutions may be filtered through publicly known constraints, if there
exist any. Using Shamir’s polynomial secret sharing technique, agent ai then sends one
secret share Fi→j of its vector Fi to each other agent aj , and receives corresponding
secret shares Fj→i of their respective vectors (lines 8 to 10). Agent ai then multiplies
together all the secret shares it received (lines 11 and 12), so that each entry in its
vectorFi becomes a secret share of 1 if and only if the corresponding candidate solution
satisfies all agents’ private constraints (otherwise, it is a secret share of 0).

Unfortunately, unlike addition, the multiplication of Shamir secret shares is a non-
trivial operation, because each secret share is the value of a polynomial, and multiply-
ing two polynomials increases the degree of the output, which must always remain
lower than the number of agents to be resolvable. Therefore, after each multiplication
of two secret shares V1 and V2 (Algorithm 12, line 1), agent ai must perform a complex
sequence of operations involving the exchange of messages in order to reduce the
degree of the output V . The agent first exchanges and adds secret shares of zero to V
to randomize it (lines 2 to 7). Once V has been randomized, the agent can share it
with other agents, which do the same (lines 8 to 13). The agent can then produce
reduced secret shares using the function REDUCEDEGREE (line 15), which involves

2Silaghi uses the different acronym MPC for the same concept.

46

3.2. Related Work

Algorithm 11 The MPC-DisCSP4 algorithm for agent ai.
1: ci(x1, . . . , xn) =

∧
c∈{c′∈C | ai=owner(c′)} c(·) // join all of ai’s private constraints

2: c0(x1, . . . , xn) =
∧
c∈{c′∈C | c′ is publicly known} c(·) // join all public constraints (if any)

3: // For each publicly feasible solution, 1 if it is also privately feasible, 0 else:

4: Fi ←
(
δci(x′1,...,x′n)=true | x′1 ∈ d1 ∧ . . . ∧ x′n ∈ dn ∧ c0(x′1, . . . , x

′
n) = true

)
5: // For each publicly feasible solution, the assignment indexes of all variables:
6: Ii ← ((index of x′1 ∈ d1, . . . , index of x′n ∈ dn) | c0(x′1, . . . , x

′
n) = true)

7: σi : [1, |Fi|] 7→ [1, |Fi|] // secret random permutation

8: for aj ∈ A do // secretly share all the F vectors
9: Send message (SHARE, secret share of Fi for agent aj) to agent aj

10: Wait for all (SHARE, Fj→i) messages and record each Fj→i

11: Fi ← F1→i
12: for aj ∈ A\{a1} do Fi ← MULTIPLY(Fi, Fj→i) // as in Algorithm 12

13: // Shuffle all F vectors (mix-net):
14: for aj ∈ A do Zj ← E(secret share of (0, . . . , 0) for agent aj) // Paillier encryption
15: Send (MIX, ai, E(Fi)) to the first agent a1 // Paillier encryption
16: for each received message (MIX, aj , F) do
17: F ← σi(F) + Zj // shuffle and re-encrypt
18: if i < |A| then send message (MIX, aj , F) to the next agent ai+1

19: else send message (MIXED, F) to aj
20: Wait for message (MIXED, F) and Fi ← E−1(F) // Paillier decryption

21: // Isolate the first globally feasible solution:
22: hi ← 1 and fi ← Fi[0]
23: for k ∈ [1, |Fi|] do
24: hi ← MULTIPLY(hi, 1− fi) // as in Algorithm 12
25: fi ← Fi[k] and Fi[k]← MULTIPLY(Fi[k], hi) // as in Algorithm 12

26: // Un-shuffle all F vectors (inverse mix-net):
27: for aj ∈ A do Zj ← E(secret share of (0, . . . , 0) for agent aj) // Paillier encryption
28: Send (UNMIX, ai, E(Fi)) to the last agent a|A| // Paillier encryption
29: for each received message (UNMIX, aj , F) do
30: F ← σ−1

i (F) + Zj // un-shuffle and re-encrypt
31: if i > 0 then send message (UNMIX, aj , F) to the previous agent ai−1

32: else send message (UNMIXED, F) to aj
33: Wait for message (UNMIXED, F) and Fi ← E−1(F) // Paillier decryption

34: // Reveal the secret shares of the variables’ chosen assignment indexes:
35: for aj ∈ A do
36: for each variable xk owned by aj do
37: τki ← −1 +

∑
s∈[1,|Fi|](1 + Ii[s][k])Fi[s]

38: Send message (SOLUTION, xk, τki) to agent aj
39: Wait for all (SOLUTION, xk, τkj) messages and record each τkj
40: for each variable xk owned by ai (myself) do

41: xk ← x∗k = dx

[
RESOLVE(τk1 , . . . , τ

k
|A|)
]

47

Chapter 3. Strong Privacy Guarantees in DCOP

several (communication-free) multiplications with constant projection and Vander-
monde matrices (refer to [Ben-Or et al., 1988] for the gory details). After exchanging
the resulting reduced secret shares (lines 16 to 17), agent ai can resolve its reduced
vector V using a (communication-free) operation involving the Lagrange coefficients;
these details are also not shown for conciseness.

Algorithm 12 MULTIPLY(V1, V2) for agent ai.
1: V ← V1 × V2 // element-wise multiplication

2: // Exchange and add secret shares of a vector full of zeros to randomize V :
3: for each other agent aj ∈ A\{ai} do
4: Zi→j ← secret share of (0, . . . 0) for agent aj
5: Send message (SHARE, Zi→j) to agent aj
6: V ← V+ secret share of (0, . . . , 0) for agent ai (myself)
7: for each received message (SHARE, Zj→i) do V ← V + Zj→i

8: // Secretly share all the V vectors:
9: for each other agent aj ∈ A\{ai} do

10: Vi→j ← secret share of V for agent aj
11: Send message (SHARE, Vi→j) to agent aj
12: Vi→i ← secret share of V for agent ai (myself)
13: Wait for all (SHARE, Vj→i) messages and record each Vj→i

14: // Reduce the polynomial degree of the shares and exchange the reduced shares:
15: (V1→i, . . . , V|A|→i)← REDUCEDEGREE(V1→i, . . . , V|A|→i)
16: for each other agent aj ∈ A\{ai} do send message (SHARE, Vj→i) to agent aj
17: Wait for all (SHARE, Vi→j) messages and record each Vi→j

18: V ← RESOLVE(Vi→1, . . . , Vi→|A|)
19: return V

Going back to Algorithm 11: after performing (|A|−1) such pairwise multiplications of
secret shares, agent ai’s vector Fi contains secret shares of 1 at the entries correspond-
ing to globally feasible solutions. Agent ai is then going to perform a transformation
on Fi so that only one such secret share of 1 remains, identifying one particular feasible
solution (if there exists one). Just selecting the first such entry would a posteriori reveal
that all previous entries are secret shares of 0, i.e. correspond to infeasible solutions to
the DisCSP. To prevent this privacy leak, the vector Fi is first randomly permuted using
a mix-net. Agent ai first encrypts its vector Fi using additively-homomorphic Paillier
encryption [Paillier, 1999], and then sends it to the first agent a1 (line 15). Agent a1

shuffles the vector (line 17) using a secret random permutation (line 7), and then
re-encrypts the result to hide the permutation used by adding encrypted shares of
zero (line 14). Agent ai’s shuffled vector Fi is passed further on through all agents in
sequence so that they can apply their respective secret random permutations, until Fi
finally returns fully shuffled to ai, which decrypts it (lines 18 to 20).

Agent ai then performs a sequence of iterative operations on Fi (lines 21 to 25) to set all

48

3.2. Related Work

its entries to secret shares of 0, except one secret share of 1 corresponding to the chosen
solution to the DisCSP (if any). The vector Fi is then un-shuffled by re-traversing the
mix-net in reverse (lines 26 to 33). Finally, agent ai can compute secret shares of the
domain index of each variable’s chosen assignment, and reveal these secret shares only
to the owner of the variable (lines 6 and 34 to 41).

Silaghi and Mitra [2004] described how this algorithm can be modified to produce the
MPC-DisWCSP4 algorithm, for DisWCSPs with a known upper bound cmax < ∞ on
the cost of any full variable assignment. This can be achieved by repeatedly running
MPC-DisCSP4 in order to find a solution of a given cost c ∈ [0, cmax].

The two MPC-Dis(W)CSP4 algorithms have numerous drawbacks. First, agents must
be able to communicate pairwise securely, which violates agent privacy. Second, the
list of all variables must be publicly known, which violates topology privacy. Third,
Shamir’s secret sharing scheme is a majority threshold scheme, which means that if at
least half of the agents collude, they can discover everyone’s private information. These
undesirable privacy properties are summarized in Table 3.1. Finally, these algorithms
are often only practical for small problems, because they perform full exhaustive
search; this is demonstrated by our experimental results in Section 3.7.

3.2.3 Privacy in Linear Programming

Some research has also been carried out to protect privacy in Linear Programs (LPs),
which form a different class of optimization problems in which all decision variables
have unbounded real-valued domains (rather than finite domains), and all (hard)
constraints as well as the objective function (i.e. the single soft constraint) are linear
formulae. When the knowledge of the constraints and/or the objective function is
partitioned among two or more parties, the question that arises is whether the LP can
be solved without each party revealing its knowledge of the problem to any other party.
Three types of knowledge partitioning can exist: 1) horizontal partitioning refers to the
case when each constraint is fully known to exactly one party; 2) vertical partitioning
corresponds to when the knowledge of each constraint is split among all the parties;
and 3) hybrid partitioning is actually a generalization of the two.

Du and Atallah [2001] proposed a privacy-preserving algorithm for the general, hybrid
partitioning case, but restricting themselves to LPs involving only equality constraints,
partitioned among only two parties. Their algorithm uses a transformation approach,
following which the first party’s constraint matrix is first decomposed as a sum of
random matrices, and each such random matrix is then further hidden among a large
enough set of random matrices, which are communicated to the second party for it to
perform the algorithm on the transformed data.

49

Chapter 3. Strong Privacy Guarantees in DCOP

Vaidya [2009] later claimed that Du and Atallah’s algorithm was incorrect when applied
to more general LPs involving inequalities, and proposed a slightly different algorithm,
restricting himself to a special partitioning case in which the objective function is
known to one party, and the constraints to another party. But Bednarz et al. [2009]
showed that Vaidya failed to fully fix the incorrectness of Du and Atallah’s algorithm,
and that both approaches still suffer from a flaw that can result in outputting a solution
that the algorithm would claim is optimal, while it is actually infeasible.

Mangasarian [2010b] described another transformation algorithm to solve general LPs
that are vertically partitioned among possibly more than two parties. In conclusion,
he pointed out that his algorithm unfortunately could not work for horizontally parti-
tioned LPs. Shortly thereafter, he proposed in [Mangasarian, 2010a] another algorithm
for such horizontally partitioned LPs, but restricting himself to LPs with only equality
constraints and non-negativity constraints. He concluded that the more general case
of horizontally partitioned LPs with inequality constraints was still an open problem.
This open problem was then very recently solved by Li et al. [2011], who proposed to
reformulate inequality constraints as equality constraints by introducing slack vari-
ables with random positive coefficients, after Mangasarian pointed out that using slack
coefficients equal to 1 (as is traditionally done) would violate privacy.

Several questions remain however open. First, while presumably correct algorithms
have been proposed respectively for the horizontal and vertical partitioning cases,
to our knowledge there still does not exist any correct, privacy-preserving algorithm
for the general case of hybrid partitioning. Second, further investigations must be
carried out on the current existing algorithms to study their empirical performance on
linear programming formulations of realistic, industrial problems. The exact privacy
guarantees provided by these algorithms also still remain vague; related work such as
[Pedersen and Savaş, 2009] suggest that it may be impossible to produce information-
theoretically secure algorithms for Linear Programming.

Recently, Kerschbaum [2011]; Wang et al. [2011] also described how transformation
techniques could be used to obfuscate an LP, and then pass it on to one or more
third-party servers to solve it.

3.3 The P-DPOP Algorithm

This section describes a first DCOP algorithm that is a variant of the DPOP algorithm,
called Private DPOP (P-DPOP), which guarantees full agent privacy. It also partially
protects topology, constraint, and decision privacy.

50

3.3. The P-DPOP Algorithm

3.3.1 Overview of the Algorithm

The high-level pseudo-code for the algorithm is presented in Algorithm 13. First (lines
1 and 2), a pseudo-tree ordering on the variables is generated. This initial step is
essentially the same as in DPOP, except that we provide a new root variable election
mechanism with improved privacy properties. A pseudo-tree for the problem in
Figure 3.1 is illustrated in Figure 3.2, which is a copy of Figure 2.9 for convenience.

Algorithm 13 Overal P-DPOP algorithm, for variable x
1: Elect a root variable (Algorithm 14, Section 3.3.2)

2: Construct a pseudo-tree rooted at the elected root (Algorithm 6)

3: // Choose and exchange codenames for x and its domain Dx:
4: Wait for messages (CODES, ỹxi , D̃

x
yi , σ

x
yi) from all yi ∈ {parentx} ∪ pseudo_parentsx

5: for each yi ∈ childrenx ∪ pseudo_childrenx do
6: x̃yi ← large random number
7: D̃yi

x ← list of |Dx| random, unique identifiers
8: σyix ← random permutation of [1, . . . , |Dx|]
9: Send message (CODES, x̃yi , D̃yi

x , σ
yi
x) to yi

10: // Choose and exchange obfuscation key for x:
11: Wait for and record a message (KEY, keyxyi) from each yi ∈ pseudo_parentsx (if any)
12: for each yi ∈ pseudo_childrenx do
13: keyyix ← vector of large random numbers, indexed by Dx

14: Send message (KEY, keyyix) to yi

15: Propagate cost values up the pseudo-tree (Algorithm 15, Section 3.3.3)

16: // Propagate decisions top-down along the pseudo-tree (Section 3.3.4):
17: if x is not the root then
18: Wait for message (VALUE, p̃∗x, ·) from parent px
19: x∗ ← x∗(p̃x = p̃∗x, ·) // where x∗(·) was computed in Algorithm 15, line 22
20: for each yi ∈ childrenx do
21: Send message (VALUE, ˜sep∗yi) to yi, with sepyi from Algorithm 15, line 13

P-DPOP’s new UTIL propagation phase is described in Section 3.3.3; in particular, it
is necessary to obfuscate the messages presented in cleartext in Figure 3.2 in order
to protect the participants’ privacy. At the end of this UTIL propagation, the root
variable x2 can choose a value for itself that is optimal for the entire subproblem (for
instance, x2 = R). This decision can then be propagated downwards along tree-edges
until all variables have been assigned optimal values (lines 16 to 21, Section 3.3.4).

3.3.2 Root Variable Election

The first step in generating a pseudo-tree ordering of the variables consists in choosing
a root for this pseudo-tree. In P-DPOP, this is achieved using Algorithm 14, which is an

51

Chapter 3. Strong Privacy Guarantees in DCOP

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

�∈ {B, R}

x2

x3

x5 x4

x1

x2 x3 x5 x4 x1

x5 → x3

x3

R 0
B 0
G 1

x1 → x4

x2

x4 R B G

R 0 0 0
B 0 0 1
G 0 1 0

x4 → x3

x2

x3 R B G

R 0 1 0
B 0 0 0
G 0 0 0

x3 → x2

x2 R B G

0 1 0

Figure 3.2: The pseudo-tree from Figure 2.9.

Algorithm 14 Anonymous root election algorithm for variable x.
Require: upper bound φmax on the constraint graph diameter

1: scorex ← large random number
2: max← random number≤ scorex
3: nlies ← rand(φmax . . . 2φmax)

4: // Propagate under-estimates of the maximum score:
5: for nlies times do
6: Send max to all neighbors
7: Get max1 . . .maxk from all neighbors
8: max_tmp← max(max,max1, . . . ,maxk)
9: max← rand(max_tmp . . .max(scorex,max_tmp))

10: // Propagate the true maximum score:
11: max← max(max, scorex)
12: for (3φmax − nlies) times do
13: Send max to all neighbors
14: Get max1 . . .maxk from all neighbors
15: max← max(max,max1, . . . ,maxk)

16: if max = scorex then x is the elected root

improvement over DPOP’s root election mechanism (Algorithm 5). There are two dif-
ferences with Algorithm 5: first, P-DPOP uses a random scoring heuristic (rather than
the most connected heuristic, for instance), so as not to leak topological information.
Second, if a naive viral propagation were used like in Algorithm 5, each variable would
be able to observe the converging sequence of tentative maximum scores received
from each neighbor, and to infer the distance between that neighbor and the elected
root, and also whether that neighbor has other neighbors. In order to prevent such

52

3.3. The P-DPOP Algorithm

inferences and guarantee topology privacy, the agents first lie a random, bounded num-
ber of times, by understating the true maximum score (lines 2 to 9). Upon termination,
only the elected variable knows that it is the root.

3.3.3 UTIL Propagation

As already illustrated in Section 3.3.1, the agents then proceed to a bottom-up prop-
agation of costs (or utilities) along the pseudo-tree. The corresponding algorithm is
given in Algorithm 15. The following sections describe the obfuscation techniques
used to protect the private information that could be leaked by the UTIL messages,
using codenames and addition of random numbers. We choose the convention to
describe the algorithm in terms of cost minimization.

Hiding Variable Names and Values using Codenames

Consider the UTIL message x1 → x4 sent by agent a(x1) to its parent variable x4 in
Figure 3.2, recalled in Figure 3.3(a) for convenience. If this message were actually
received in cleartext, it would breach agent privacy and topology privacy: agent a(x4)

would be able to infer from the dependency of the message on variable x2 both the
existence of agent a(x2) (which violates agent privacy) and the fact that x2 is a neighbor
of one or more unknown nodes below (and including) x1, which would violate topology
privacy.

x1 → x4

x2

x4 R B G

R 0 0 0

B 0 0 1

G 0 1 0
(a) in cleartext

x1 → x4

928372
x4 α β γ

R 0 0 0

B 0 0 1

G 0 1 0
(b) partly obfuscated

x1 → x4

928372
x4 α β γ

R 620961 983655 534687

B 620961 983655 534688

G 620961 983656 534687
(c) fully obfuscated

Figure 3.3: The UTIL message x1 → x4 in Figure 3.2.

In order to patch these privacy leaks, variable x2 and its domain D2 = {R,B,G} are
replaced with random codenames x̃x12 = 928372 and D̃x1

2 = {α, β, γ}, as shown in
Figure 3.3(b). These codenames are preliminarily generated by a(x2) and communi-
cated directly to the leaf of the corresponding back-edge (Algorithm 13, lines 4 to 9).
The leaf of the back-edge applies these codenames to its messages before sending it
(Algorithm 15, line 6), and they are only resolved once the propagation reaches the root
of the back-edge (Algorithm 15, line 15). As a result, without the knowledge of these
codenames, all agents in between (such as a(x4)) are only able to infer the existence of
a cycle in the constraint graph involving some unknown ancestor and some unknown

53

Chapter 3. Strong Privacy Guarantees in DCOP

Algorithm 15 P-DPOP’s obfuscated UTIL propagation, for variable x
1: // Join local constraints:
2: px ← parentx
3: m(x, px, ·)← Σc∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo_childrenx)=∅}c(x, ·)
4: // Apply codenames:
5: for each yi ∈ {px} ∪ pseudo_parentsx do
6: m(x, p̃x, ·) ← replace (yi, Dyi) in m(x, px, ·) with (ỹxi , D̃

x
yi) from Algorithm 13,

line 4, and apply the permutation σxyi to D̃x
yi

7: // [Only for Max-DisCSPs] Obfuscate infeasible entries:
8: r ← small, positive, random number

9: m(x, p̃x, ·)←
{
m(x, p̃x, ·) if m(x, p̃x, ·) = 0
m(x, p̃x, ·) + r if m(x, p̃x, ·) > 0

10: // Join with received messages:
11: for each yi ∈ childrenx do
12: Wait for the message (UTIL, mi(x̃, ·)) from yi
13: sepyi ← scope(mi)
14: for each z ∈ childrenx ∪ pseudo_childrenx do
15: mi(x, ·)← identify (x̃z, D̃z

x) as (x,Dx) in mi(x̃, ·) (if x̃z is present)
16: m(x, p̃x, ·)← m(x, p̃x, ·) +mi(x, ·)
17: // De-obfuscate costs with respect to x:
18: for each yi ∈ pseudo_childrenx do
19: m(x, p̃x, ·)← m(x, p̃x, ·)− keyyix (x) // with keyyix from Algorithm 13, line 13

20: // Project out x:
21: if x is not the root variable then
22: x∗(p̃x, ·)← arg minx {m(x, p̃x, ·)}
23: m(p̃x, ·)← minx {m(x, p̃x, ·)}
24: // Obfuscate costs:
25: for each yi ∈ pseudo_parentsx do
26: m(p̃x, ·)← m(p̃x, ·) + keyxyi(ỹ

x
i) // with keyxyi from Algorithm 13, line 11

27: Send the message (UTIL, m(p̃x, ·)) to px
28: else x∗ ← arg minx {m(x)} // m(x, p̃x, ·) actually only depends on x

descendent, which is tolerated by the definition of topology privacy (Definition 10)
since they are also involved in this cycle. Furthermore, a secret, random permuta-
tion σx12 is also applied to the obfuscated domain D̃x1

2 ; this is useful for problem classes
in which variable domains are public knowledge.

Obfuscating Costs

Hiding variable names and values using codenames addresses the leaks of agent and
topology privacy. However, this does not address the fact that the costs in the UTIL

54

3.3. The P-DPOP Algorithm

message x1 → x4 in Figure 3.3(b) violate constraint privacy, because they reveal to
x4 that its subtree can always find a feasible solution to its subproblem when x4 = R,
regardless of the value of the obfuscated variable 928372. To patch this privacy leak,
costs are obfuscated by adding large, random numbers that are generated by the root
of the back-edge (x2) and sent over a secure channel to the leaf of the back-edge
(Algorithm 13, lines 11 to 14). The obfuscation is performed in such a way that a
different random number is added to all costs associated with each value of x2, as
in Figure 3.3(c), using the obfuscation key [620961, 983655, 534687]. These random
numbers are added by the leaf of the back-edge to its outgoing message (Algorithm 15,
line 26), and they are only eventually subtracted when the propagation reaches the
root of the back-edge (Algorithm 15, line 19).

Important note: For the addition of random numbers to be a valid obfuscation scheme,
the UTIL messages must not contain any infinite costs/utilities, whose obfuscations
would otherwise remain infinite. Therefore, for P-DPOP to be applicable, the input
DCOP must first be formulated as a pure soft DCOP, in which all ±∞ costs/utilities
must be replaced with ±M entries, with M sufficiently large, but still smaller than
the random numbers used for obfuscation. Similarly, pure DisCSPs must first be
reformulated as Max-DisCSPs.

Notice that this obfuscation scheme achieves two objectives: 1) it hides from x4 the
absolute costs of its subtree, and 2) it hides the relative dependencies of these costs on
the obfuscated variable 928372, because different random numbers were used for each
value in its obfuscated domain {α, β, γ}. Agent a(x4) is still able to infer the relative
dependencies on its own variable x4, which is necessary to perform the projection of
this variable, but it is unable to tell, for each value of the other (obfuscated) variable,
what the corresponding cost is for its subtree. Notice in particular that, for a given value
of the obfuscated variable, agent a(x4) does not know whether any of the corresponding
entries was initially equal to 0, and therefore it would be incorrect to simply assume
that the lowest of the obfuscated entries decrypts to 0.

Notice also that this obfuscation scheme is only applicable in the presence of a back-
edge, i.e. when the message contains more than just the parent variable. Consider for
instance the single-variable message x5 → x3 in Figure 3.2, recalled for convenience
in Figure 3.4(a). If agent a(x3) knew that x5 is a leaf of the pseudo-tree, the cleartext
message would reveal agent a(x5)’s private local constraint x5 6∈ {B,R} to agent x3, and
the previous obfuscation scheme does not apply because of the absence of back-edges.
Notice that this threat to constraint privacy is tempered by the fact that P-DPOP’s
guarantees in terms of topology privacy prevent agent a(x3) from discovering that x5 is
indeed a leaf. From a(x3)’s point of view, a larger subproblem might be hanging below
variable x5 in Figure 3.2, and the message could actually be an aggregation of multiple
agents’ subproblems.

55

Chapter 3. Strong Privacy Guarantees in DCOP

Further Obfuscating Numbers of Conflicts in Max-DisCSP

In a Max-DisCSP, whose objective is to find a feasible solution of cost 0, the aforemen-
tioned privacy leak in single-variable UTIL messages can be partly patched by adding
small, positive, random numbers to non-zero entries, in order to obfuscate the true
numbers of constraint violations (Algorithm 15, line 9), as illustrated in Figure 3.4(b),
where the random number 41 has been added to the non-zero entries of the cleartext
message in Figure 3.4(a). Because these random numbers are never subtracted back,
they must not be added to zero entries, otherwise the algorithm would fail to find
a solution with no violation. This means that feasible entries are still revealed, but
the number of constraint violations for infeasible entries remain obfuscated. This
improved privacy is not applicable to DCOPs, in which it is not possible a priori to
identify costs that are guaranteed to be sub-optimal.

x5 → x3

x3 # conflicts

R 0

B 0

G 1
(a) in cleartext

x5 → x3

x3 # conflicts

R 0

B 0

G 42
(b) obfuscated

Figure 3.4: The UTIL message received by agent a(x3) in Figure 3.2.

3.3.4 VALUE Propagation

Once the costs have propagated up all the way to the root of the pseudo-tree, and an
optimal assignment to this root variable has been found, this assignment is propagated
down the pseudo-tree (Algorithm 13, lines 16 to 21). Each variable uses the assignments
contained in the message from its parent, in order to look up a corresponding optimal
assignment for itself (line 19). It then sends to each child the assignments for the
variables in its separator (line 21), using the same codenames as before so as to protect
agent and topology privacy. Decision privacy is only partially guaranteed, because
each variable learns the values chosen for its parent and pseudo-parents — but not for
other, non-neighboring variables in its separator because they are hidden by unknown
codenames.

3.3.5 Algorithm Properties

This section formally proves that the overall algorithm is complete. Proofs about
the other properties of the algorithm in terms of privacy guarantees will be given in
Section 3.6.

56

3.3. The P-DPOP Algorithm

Theorem 1. P-DPOP (Algorithm 13) terminates with a probability that can be made
arbitrarily close to 1. Upon termination, it returns an optimal solution to the DCOP.

Proof. The root election procedure in Algorithm 14 is a viral propagation procedure
that is guaranteed to terminate in exactly 3φmax steps, after which a single variable (per
connected component of the constraint graph) has been elected, unless a collision
occurs in which two or more variables have been assigned the maximum score (line 1).
If scores are drawn uniformly from [0, smax), then the probability of such a collision
can be made arbitrarily small by choosing smax sufficiently large.

Once a root variable has been chosen, the subsequent pseudo-tree construction (Al-
gorithm 6) terminates after the exchange of exactly 2ne sequential messages, where
ne is the number of edges in the pseudo-tree: two CHILD messages down and up
each tree-edge, plus one CHILD message up and one PSEUDO message down each
back-edge.

After exchanging codenames and obfuscation keys, which is guaranteed to require a
number of messages linear in the number n of variables, the bottom-up UTIL prop-
agation (Algorithm 15) terminates after sending exactly (n − 1) messages (one up
each tree-edge). One can prove by induction (left to the reader) that this multi-party
dynamic programming computation almost surely correctly reveals to each variable x
the (obfuscated) optimal cost of its subtree’s subproblem, as a function of x and pos-
sibly of ancestor variables in the pseudo-tree. This process may only fail in case of
collisions of codenames, when the roots of two overlapping back-edges choose the
same codenames. This can be made as improbable as desired by augmenting the size
of the codename space.

Finally, the top-down VALUE propagation phase (Algorithm 13, lines 16 to 21) is guar-
anteed to yield an optimal assignment to each variable, after the exchange of exactly
(n− 1) messages (one down each tree-edge).

When it comes to the complexity of the algorithm in terms of number of messages
exchanged, the bottleneck is in the election of the root variable, which requires exactly
6nneφmax ∈ O(n3) messages. However, the (n− 1) UTIL messages can be exponentially
large: the message sent by variable x is expressed over |sepx| variable codenames
(Algorithm 15, line 13), and therefore contains O(D

|sepx|
max) costs, where Dmax is the

size of the largest variable domain. The overall complexity in terms of information
exchange is thereforeO(n ·Dsepmax

max), where sepmax = maxx |sepx|. In the worst case, the
pseudo-tree consists of a single branch (necessarily involving (n− 1) tree-edges), and
all remaining (ne−n+1) back-edges are rooted strictly above the sender variable x and
leaved below x (possibly including x). The separator of x then contains the codenames
for the roots of all these back-edges, plus the parent variable of x, and therefore we

57

Chapter 3. Strong Privacy Guarantees in DCOP

have sepmax ≤ ne − n + 2 ≤ 1
2n

2 − 3
2n + 2. Notice that, contrary to DPOP, in P-DPOP

each UTIL message can contain multiple times the same variable, obfuscated using
different codenames; therefore, the number of variables in the largest UTIL message is
no longer bounded above by the induced width of the pseudo-tree.

3.3.6 P-DPOP−: Trading off Topology Privacy for Performance

As previously explained, the bottleneck of the P-DPOP algorithm in terms of infor-
mation exchange lies in the sizes of the UTIL messages, which are exponential in the
numbers |sepxi | of variable codenames they contain. It is possible to reduce the sizes
of the separators, by enforcing that each agent a(x) send the same codename x̃ for x to
all of x’s (pseudo-)children, contrary to was is prescribed in Algorithm 13, lines 4 to 9.
Algorithms including this modification will be identified by a minus sign in exponent;
P-DPOP− is actually the version of P-DPOP that we initially proposed in [Faltings et al.,
2008].

As a result of this change, variables that previously may have occurred multiple times
in the same UTIL message under different codenames can now only appear at most
once. The worst-case complexity of P-DPOP− in terms of information exchange then
becomes the same as that of the original DPOP algorithm (Section 2.4.4), in which
sepmax is equal to the induced width of the pseudo-tree, which is bounded above by n
and below by the treewidth of the constraint graph.

While the complexity of P-DPOP− is hereby decreased compared to P-DPOP, sending
the same codename x̃ for variable x to all its (pseudo-)children also has drawbacks
in terms of topology privacy. One variable y might receive a UTIL message expressed
over a codename x̃ that it knows corresponds to x because x is a (pseudo-)parent of y,
and x has also communicated the same codename x̃ to y. This enables y to infer that
x has at least one pseudo-child below y in the pseudo-tree. Consider for instance
the case of variable x3 in Figure 3.2, which receives from x4 a message x4 → x3 that
contains variable x2, represented by a codename. Because x3 is a child of x2, it will
have received the same codename for x2, and will therefore be able to infer that x2

has a pseudo-child below (and possibly including) x4. This privacy leak is analyzed in
more detail in Theorem 7.

3.4 Full Decision Privacy: the P3/2-DPOP Algorithm

This section presents another variant of the P-DPOP algorithm (Section 3.3) that
achieves full decision privacy. This results in a hybrid algorithm between the P-DPOP
and P2-DPOP (Section 3.5) algorithms, and is therefore called P3/2-DPOP. Unfortu-
nately, full decision privacy comes at a minor loss in topology privacy, as will be

58

3.4. Full Decision Privacy: the P3/2-DPOP Algorithm

discussed in Section 3.6.

3.4.1 Overview of the Algorithm

As already explained in Section 3.3.4, the P-DPOP algorithm partially violates decision
privacy, because the final top-down propagation of decisions reveals to each variable
the values chosen for its parent and pseudo-parent variables. The variant Algorithm 16
patches this privacy leak by removing this VALUE propagation. As a result, only the root
variable is assigned a value, and for all variables to be assigned values, it is necessary
to make each variable root in turn (unless the first UTIL propagation has revealed that
the problem is infeasible, in which case the algorithm can terminate early).

Algorithm 16 Overall P3/2-DPOP algorithm with full decision privacy, for variable x
1: Elect a root variable (Algorithm 14)

2: Construct a pseudo-tree and choose unique variable IDs (Algorithm 17)

3: vectorx ← [

idx︷ ︸︸ ︷
1, . . . , 1, 0,

id+x−idx︷ ︸︸ ︷
−1, . . . ,−1, 1, . . . , 1︸ ︷︷ ︸

n+

] // with idx, id+
x and n+ from Algo-

rithm 17

4: // Exchange public key shares:
5: privatex ← generate a private ElGamal key for x
6: publicx ← generate a set of (id+

x − idx + 1) public key shares for privatex
7: for each share ∈ publicx do TOPREVIOUS((SHARE, share)) as in Algorithm 18
8: for i = 1 . . . n+ do
9: Wait for and record one message (SHARE, share)

10: if share 6∈ publicx then TOPREVIOUS((SHARE, share)) as in Algorithm 18
11: Generate the compound ElGamal public key based on all the public key shares

12: while vectorx 6= ∅ do
13: Choose a new root (Algorithm 19, Section 3.4.4)

14: Construct a new pseudo-tree rooted at the new root (Algorithm 6)

15: Exchange codenames for x and its domain Dx (Algorithm 13, lines 4 to 9)

16: Exchange obfuscation key for x (Algorithm 13, lines 11 to 14)

17: Propagate costs up the pseudo-tree (Algorithm 15)
18: if x is root then Add local constraint x = x∗, with x∗ from Algorithm 15, line 28

To iteratively reroot the pseudo-tree, we proceed as follows. The procedure requires
that each of the n variables be assigned a unique ID, which is achieved via a modifica-
tion of the pseudo-tree generation Algorithm 6; this modified algorithm is presented
in Section 3.4.2. Each variable x then creates a Boolean vector vectorx with a single
zero entry at the index corresponding to its unique ID idx (line 3). Each vector is then

59

Chapter 3. Strong Privacy Guarantees in DCOP

encrypted using ElGamal homomorphic encryption (Section 3.2.1). All these vectors
are then passed from variable to variable in a round-robin fashion, using a circular
message routing algorithm presented in Section 3.4.3, each variable applying a secret
permutation to each vector and systematically re-encrypting the result to hide the per-
mutation used (Section 3.4.4). Whenever the pseudo-tree needs to be rerooted, each
variable removes the first element in its vector; the only one that decrypts to 0 identifies
the new root. This approach ensures that only the newly elected root knows that it is
the root, and no coalition of agents (except the grand coalition) can influence the order
in which the variables are made roots, which is a desirable feature because agents
might otherwise compete to be root first, in order to be the first to find assignments for
their variables.

3.4.2 Assigning Unique IDs to Variables

The assignment of unique IDs to the n variables is an instance of the well-known
renaming problem, for which multiple algorithms have been proposed in the literature
on distributed algorithms. However, to our knowledge, all these algorithms focus
on robustness to failures, and ignore the issue of privacy. On the contrary, in this
paper we do not consider agent failures, and we rather need an algorithm that protects
agent and topology privacy. To this purpose, we propose Algorithm 17, which is a
modification of the pseudo-tree generation Algorithm 6, and is an improved version of
the algorithm we initially proposed in [Léauté and Faltings, 2009b]. Each variable x is
assigned a unique number idx that corresponds to the order in which it is first visited
during the distributed traversal of the constraint graph (or, more precisely, an upper
bound thereon). This is done by appending to each CHILD message the number id of
variables visited so far (lines 8, 29 and 31). Each variable adds a random number to id
so as not to leak any useful upper bound on its number of neighbors (lines 5 and 15).
At the end of this algorithm, the root variable discovers an upper bound n+ on the total
number of variables, and reveals it to everyone (lines 35 and 22 to 24).

3.4.3 Routing of Messages along a Circular Variable Ordering

In order to implement the round-robin exchange of vectors briefly mentioned in
Section 3.4.1, the variables are ordered along a circular ordering that is mapped to the
chosen pseudo-tree, as illustrated in Figure 3.5. Each variable needs to be able to send
a message to the previous variable (i.e. clock-wise) in the ordering, which is a challenge
in itself because of the assumption that only neighboring variables can communicate
directly. Furthermore, to protect agent and topology privacy, no agent should know
the overall circular ordering. Algorithm 18 is a routing algorithm that solves this issue.

Consider for instance a message M that agent a(x1) wants to send to the previous

60

3.4. Full Decision Privacy: the P3/2-DPOP Algorithm

Algorithm 17 Pseudo-tree and unique ID generation algorithm for variable x
1: if x has at least one neighbor then
2: openx ← ∅
3: if x has been elected as the root then
4: idx ← 0
5: id+

x ← idx + rand(incrmin . . . 2incrmin)
6: openx ← all neighbors of x
7: Remove a random neighbor y0 from openx and add it to childrenx
8: Send the message (CHILD, id+

x + 1) to y0

9: loop
10: Wait for an incoming message (type, id) from a neighbor yi

11: if openx = ∅ then // first time x is visited
12: openx ← all neighbors of x except yi
13: parentx ← yi
14: idx ← id
15: id+

x ← idx + rand(incrmin . . . 2incrmin)

16: else if type = CHILD and yi ∈ openx then
17: Remove yi from openx and add it to pseudo_childrenx
18: Send message (PSEUDO, id) to yi
19: next

20: else if type = PSEUDO then
21: Remove yi from childrenx and add it to pseudo_parentsx

22: else if type = NBRVARS then
23: n+ ← id // upper bound on the true number of variables n
24: break

25: // Forward the CHILD message to the next open neighbor:
26: Choose a random yj ∈ openx
27: if there exists such a yj then
28: Remove yi from openx and add it to childrenx
29: Send the message (CHILD, max(id, id+

x + 1)) to yj
30: else if x is not the elected root then // backtrack
31: Send message (CHILD, max(id, id+

x + 1)) to parentx
32: else
33: n+ ← id // upper bound on the true number of variables n
34: break
35: Send message (NBRVARS, n+) to all children of x

variable (which is x4, but a(x1) does not know this piece of information). Agent a(x1)

wraps M into a PREV message that it sends to its parent variable x4 (line 2). Because
the sender variable x1 is x4’s first (and only) child, a(x4) infers that it should deliver M
to itself (line 9). Consider that a(x4) now wants to forward M to its previous variable
(x5, which a(x4) does not know because they are not neighbors). Like before, a(x4)

sends a message (PREV, M) to its parent variable x3, which then reacts by sending

61

Chapter 3. Strong Privacy Guarantees in DCOP

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

x1 → x4

x2

x4 R B G

R true true true

B true true false

G true false true

x3 → x2

x2 R B G

true false true

x5 → x3

x3

R true

B true

G false

�∈ {B, R}

x2

x3

x5 x4

x1

x4 → x3

x2

x3 R B G

R true false true

B true true true

G true true true

Figure 3.5: The (counter-clock-wise) circular ordering based on Figure 3.2.

Algorithm 18 Sending a message M clock-wise in the circular variable ordering.
Procedure: TOPREVIOUS(M) for variable x

1: if x is the root of the pseudo-tree then Send the message (LAST,M) to x’s last child
2: else Send the message (PREV, M) to x’s parent

Procedure: ROUTEMESSAGES() for variable x
3: loop
4: Wait for an incoming message (type,M) from a neighbor yi
5: if type = LAST then
6: if x is a leaf then Deliver message M to x
7: else Send the message (LAST, M) to x’s last child
8: else if type = PREV then
9: if yi is x’s first child then Deliver the message M to x

10: else Send the message (LAST,M) to the child before yi in x’s list of children

a message (LAST, M) to its last child preceding x4 in its list of children, which is x5

(line 10). LAST messages indicate that the payload M should be delivered to the last
leaf of the current subtree (line 7); therefore, a(x5) delivers M to itself (line 6) since it
has no children. If the root wants to send a message to its previous variable, it also uses
a LAST message to forward it to the last leaf of the overall pseudo-tree (line 1).

3.4.4 Choosing a New Root Variable

When it comes to electing a new root, the agents proceed as in Algorithm 19. Each
variable x first starts the procedure SHUFFLEVECTORS(), which is run only once — this
is a performance improvement over the initial algorithm we proposed in [Léauté and
Faltings, 2009b], in which the shuffling was performed at each iteration. When this
initial procedure reaches line 17, x’s vector vectorx (Algorithm 16, line 3) will have been
randomly shuffled, and will contain a single entry that decrypts to 0 at the position
corresponding to the number of the iteration at which x will be the root.

The procedure SHUFFLEVECTORS() proceeds in four rounds. During round 1 (started on

62

3.4. Full Decision Privacy: the P3/2-DPOP Algorithm

Algorithm 19 Algorithm to choose a new root, for variable x
Procedure: SHUFFLEVECTORS() for variable x

1: myID ← large random number
2: px ← random permutation of [1 . . . n+]

3: // Propagate x’s encrypted vector backwards along the circular ordering
4: vectorx ← E(vectorx) // encrypts the vector using the compound public key
5: TOPREVIOUS((VECT, myID, vectorx, 1)) as in Algorithm 18 and Section 3.4.3

6: // Process all received vectors
7: while true do
8: Wait for a message (VECT, id, vector, round) from the next variable

9: if round = 1 then
10: if id 6= myID then for j = (idx + 1) . . . id+

x do vector[j]← −1
11: else round← round+ 1 // x’s vector; move to next round
12: if round > 1 and x is the current root then
13: round← round+ 1 // the root starts each round except the first
14: if round = 3 then
15: vector ← px(vector) // shuffle the vector
16: else if round = 4 and id = myID then // done processing vectorx
17: vectorx ← vector
18: continue

19: // Pass on the vector backwards along the circular ordering
20: vector ← E(vector) // re-encrypts the vector using the compound public key
21: TOPREVIOUS((VECT, id, vector, round)) as in Algorithm 18 and Section 3.4.3

Procedure: REROOT() for variable x
22: repeat
23: entry ← DECRYPT(pop(vectorx)) // as in Algorithm 20
24: until entry 6= −1
25: if entry = 0 then x is the new root

line 5), variable x’s vector vectorx makes a full round along the circular ordering, during
which each other variable x′ overwrites some of the entries with −1 (line 10), at the
same positions it did for its own vector (Algorithm 16, line 3). These−1 entries account
for the “phantom variables" that each variable implicitly introduces when overstating
its idx as id+

x (Algorithm 17). Once x has received back its own vector, it enters round 2
(line 11), which is an incomplete round during which the vector is passed on until it
reaches the current root (line 12). The root then starts round 3 (line 13), during which
each variable shuffles the vector using its secret permutation px (line 15), using a mix-
net mechanism similar to the one in [Silaghi, 2005a]. The incomplete round 4 finally
returns the fully shuffled vector to its owner (line 17). Each agent’s vector therefore
performs 3 full rounds, except for the root variable’s vector, which performs only 2 full
rounds, since the incomplete rounds 2 and 4 can be skipped.

63

Chapter 3. Strong Privacy Guarantees in DCOP

When it is necessary to reroot the variable ordering at the beginning of each iteration
of P3/2-DPOP, each variable x then calls the procedure REROOT(), which consists in
removing and decrypting the first element of its vector. Entries that decrypt to −1

correspond to phantom variables, and must be skipped. The single entry that decrypts
to 0 identifies the new root. The decryption process, Algorithm 20, is a collaborative
effort that involves each variable using its private ElGamal key to partially decrypt
the cyphertext. The cyphertext travels around the circular variable ordering in the
same way as the vectors, until it gets back to its sender variable, which can finally fully
decrypt it.

Algorithm 20 Collaborative decryption of a multiply-encrypted cyphertext e
Procedure: DECRYPT(e) for variable x

1: codename← large random number
2: codenamesx ← codenamesx ∪ {codename}
3: TOPREVIOUS((DECR, codename, e)) as in Algorithm 18
4: Wait for message (DECR, codename, e′) from next variable in the ordering
5: return decryption of e using x’s private key

Procedure: COLLABORATIVEDECRYPTION() for variable x
6: loop
7: Wait for a message (DECR, c, e) from next variable in the ordering
8: if c 6∈ codenamesx then
9: e′ ← partial decryption of e using x’s private key

10: TOPREVIOUS((DECR, c, e′)) as in Algorithm 18

3.4.5 Algorithm Properties

The following theorem states that the P3/2-DPOP algorithm (Algorithm 16) is complete.
The analysis of the algorithm in terms of privacy guarantees is delayed to Section 3.6.

Theorem 2. The P3/2-DPOP algorithm terminates with a probability that can be made
arbitrarily close to 1. Upon termination, it returns an optimal solution to the DCOP, if
there exists one.

Proof. On the basis of Theorem 1, it remains to prove that the rerooting Algorithm 19
terminates and is correct, and that the overall algorithm remains correct. The latter is
easy to prove: at each iteration, an optimal value is found for the root variable, and that
value is necessarily consistent with the chosen assignments to previous roots since
these assignments are enforced by new, additional constraints (Algorithm 16, line 18).

When it comes to the termination and correctness of the rerooting procedure, Algo-
rithm 17 ensures that each of the n variables gets a unique ID in 0 . . . (n+−1). Therefore,
each variable has a 0 entry at a unique position in its vector (Algorithm 16, line 3).
Round 1 of Algorithm 19 also makes sure that all vectors have−1 entries at the same

64

3.5. Full Constraint Privacy: the P2-DPOP Algorithm

positions. This ensures that exactly one variable will become the new root at each
iteration, since all vectors are applied the same sequence of permutations, and no
variable will be root twice.

In terms of complexity, P3/2-DPOP proceeds in a similar way to P-DPOP (Section 3.3.5),
except that the bottom-up UTIL propagation phase is repeated n times (each time
with a different root variable). The overall complexity in information exchange there-
fore becomes O(n2 · Dsep′max

max), where sep′max is the maximum separator size over all
variables, and over all iterations, which therefore is likely to be higher than the expo-
nent for P-DPOP. The information exchanged by the rerooting protocol is negligible
in comparison. In terms of number of ElGamal cryptographic operations, the re-
rooting procedure requires a total of n(3n − 1)n+ ∈ O(n3) encryptions: each of the
n variables (re-)encrypts (3n− 1) vectors of size n+ (each variable’s vector performs
3 full rounds, except for the root’s vector, which performs only 2 full rounds), with
n+ ≤ n + n · 2incrmin, where incrmin is a constant input parameter of the algorithm.
The procedure also requires a total of n2n+ ∈ O(n3) collaborative decryptions: each of
the n variables (partially) decrypts n vectors or size n+.

3.5 Full Constraint Privacy: the P2-DPOP Algorithm

The algorithms in the previous sections address constraint privacy through the obfus-
cation of costs by adding large random numbers (Section 3.3.3). As later discussed in
Section 3.6.3, this method is not fully, cryptographically secure, and only guarantees
partial constraint privacy.

We now describe how this obfuscation scheme can be replaced with ElGamal ho-
momorphic encryption (Section 3.2.1) to achieve full constraint privacy, which cor-
responds to the P2-DPOP algorithm we originally proposed in [Léauté and Faltings,
2009b]. An important limitation of the ElGamal cryptographic scheme is that it is not
fully homomorphic: it is possible to compute the min of two encrypted numbers, but it
is only possible to compute the sum of an encrypted number with a cleartext number.
A consequence of this limitation is that the bottom-up UTIL propagation has to be
performed on a variable ordering such that each variable can have only one child, i.e.
a linear variable ordering. Otherwise, in a pseudo-tree variable ordering, a variable
with two children would not be able to join the two encrypted UTIL messages sent by
the children.

Another limitation of the ElGamal scheme as described in Section 3.2.1 is that, when
applied to numbers (rather than Booleans), it only works on integers in [0, cmax]∪{+∞},
where cmax ∈ N is a free parameter. Therefore, when it comes to optimization, the
P2-DPOP algorithm is only going to be applicable to DisWCSPs for which an upper
bound cmax on the cost of the optimal (feasible) solution is known; not to general

65

Chapter 3. Strong Privacy Guarantees in DCOP

DCOPs. Notice however that, contrary to P<2-DPOP, the input DisWCSP may include
infinite costs, and, when applied to pure DisCSPs, the problems do not need to be first
reformulated into Max-DisCSPs.

3.5.1 Encrypted UTIL Propagation along a Linear Variable Order

In contrast with Figure 3.2, which illustrates multi-party dynamic programming on a
pseudo-tree variable ordering, Figure 3.6 shows (in cleartext) how the same compu-
tation can be performed on a linear ordering (corresponding to the circular variable
ordering in Figure 3.5). This assumes that a circular communication structure has
preliminarily been set up as described in Section 3.4.3.

x3 → x2

x2 R B G

0 1 0

x5 → x3

x2

x3 R B G

R 0 1 0

B 0 0 0

G 1 1 1

x4 → x5

x2

x3 R B G

R 0 1 0

B 0 0 0

G 0 0 0

x1 → x4

x2

x4 R B G

R 0 0 0

B 0 0 1

G 0 1 0

x1

x2 x3

x4

x5

�=

�=

�=

�=

�=

R �=

x2

x3

x5 x4

x1

�= B

�∈ {B, R}

x2

x3

x5 x4

x1

x2 x3 x5 x4 x1

x5 → x3

x3

R 0
B 0
G 1

x1 → x4

x2

x4 R B G

R 0 0 0
B 0 0 1
G 0 1 0

x4 → x3

x2

x3 R B G

R 0 1 0
B 0 0 0
G 0 0 0

x3 → x2

x2 R B G

0 1 0

Figure 3.6: UTIL propagation (in cleartext) in P2-DPOP for Figure 2.1.

Algorithm 21 P2-DPOP’s UTIL propagation procedure, for variable x
1: // Join local constraints:
2: m(x, ·)←∑

c∈{c′∈C | x∈scope(c′) ∧ scope(c′)∩(childrenx∪pseudo_childrenx)=∅} c(x, ·)
3: // Apply codenames:
4: for each yi ∈ {parentx} ∪ pseudo_parentsx do
5: m(x, ·) ← replace (yi, Dyi) in m(x, ·) with (ỹxi , D̃

x
yi) from Algorithm 13, line 4,

and apply the permutation σxyi to D̃x
yi

6: // Join with received message:
7: Wait for the message (UTIL, m′(·)) from the next variable in the ordering
8: for each z ∈ childrenx ∪ pseudo_childrenx do
9: m′(·)← identify (x̃z, D̃z

x) as (x,Dx) in m′(·) (if x̃z is present)
10: m(x, ·)← m(x, ·) +m′(·)
11: // Project out x:
12: if x is not the root variable then
13: m(·)← minxm(x, ·)
14: m(·)← E (m(·)) // re-encrypts costs using the compound public key
15: TOPREVIOUS((UTIL, m(·))) as in Algorithm 18
16: else (x∗, c∗)← OPTIMIZE(m(x, ·)) as in Algorithm 22

66

3.5. Full Constraint Privacy: the P2-DPOP Algorithm

Algorithm 21 gives the detailed pseudocode for this procedure, and is intended as a
replacement for line 17 in Algorithm 16. The differences with the pseudo-tree-based
Algorithm 15 are the following. First notice that, in the case of the linear ordering, a
variable’s local subproblem no longer necessarily involves its parent variable in the
ordering (line 2), just like x4 shares no constraint with x5 in Figures 3.5 and 3.6. The
next, more important difference is that variable x no longer partially de-obfuscates
its cost matrix before projecting itself (Algorithm 15, line 19). The reason for this is
that the ElGamal cryptographic scheme is homomorphic, and therefore it is no longer
necessary to first decrypt the costs in order to project x using the operator minx. Only
the root variable requires decryption (Algorithm 21, line 16), because it needs to find a
value x∗ for its variable x whose encrypted cost is the optimal one. This is described in
the following section.

3.5.2 Decrypting an Optimal Value for the Root Variable

Algorithm 22 is a dichotomy procedure to find an optimal assignment to the root
variable x within its domain Dx. Like for the vector heads in Section 3.4.4, the de-
cryption of ElGamal-encrypted costs is a collaborative process that requires each
variable to partially decrypt the cyphertext using its private key (Algorithm 20). This di-
chotomy algorithm involves at most 2dlog2 |Dx|e such decryptions (assuming |Dx| > 1).
In the DisCSP case, this worst-case number of decryptions can be brought down to
dlog2 |Dx|+ 1e, using Algorithm 23.

Algorithm 22 Finding an optimal value for x in the encrypted cost matrix m(x)

Procedure: OPTIMIZE(m (x = xil . . . xir))
1: if il < ir then // cut in half the remaining subdomain:

2: Il ←
[
il,
⌊
il+ir

2

⌋]
3: Ir ←

[⌊
il+ir

2

⌋
+ 1, ir

]
4: c∗l ← DECRYPT(mini∈Il m (x = xi)) as in Algorithm 20
5: c∗r ← DECRYPT(mini∈Ir m (x = xi)) as in Algorithm 20
6: if c∗l ≤ c∗r then
7: if Il = {il} then return (xil , c

∗
l)

8: else return OPTIMIZE(m (x = xi∈Il))
9: else

10: if Ir = {ir} then return (xir , c
∗
r)

11: else return OPTIMIZE(m (x = xi∈Ir))

12: else // only one value possible for x
13: return (xil , DECRYPT (m(xil))) as in Algorithm 20

67

Chapter 3. Strong Privacy Guarantees in DCOP

Algorithm 23 Finding a feasible value in the encrypted Boolean matrix m(x)

Procedure: FEASIBLEVALUE(m (x = xil . . . xir))
1: if il < ir then // cut in half the remaining subdomain:

2: I ←
[
il,
⌊
il+ir

2

⌋]
3: feasible← DECRYPT

(∨
i∈I m (x = xi)

)
as in Algorithm 20

4: if feasible = true then return FEASIBLEVALUE(m (x = xi∈I))
5: else return FEASIBLEVALUE

(
m
(
x = xi∈([il,ir]−I)

))
6: else // only one value remains for x
7: feasible← DECRYPT(m (x = xil)) as in Algorithm 20
8: if feasible = true then return xil
9: else return null

3.5.3 Algorithm Properties

Like for the previous algorithms, the discussion about the properties of P2-DPOP in
terms of privacy is postponed to Section 3.6. The following theorem focuses on the
termination and completeness properties.

Theorem 3. The P2-DPOP algorithm terminates with a probability that can be made
arbitrarily close to 1. Upon termination, it returns an optimal solution to the DCOP.

Proof. The termination property follows directly from Theorem 2, and by the fact that
the message routing procedure in Algorithm 18 guarantees that all UTIL messages
eventually reach their destinations. When it comes to completeness, the homomorphic
property of the ElGamal cryptographic scheme ensures that the projection of a vari-
able x out of an encrypted cost matrix is correct, and that the UTIL message received
by each variable in the linear ordering still summarizes the (encrypted) optimal cost
of the lower agents’ aggregated subproblems, as a function of variables higher in the
ordering. In particular, the UTIL message received by the root allows it to find a value
for its variable that is optimal for the overall problem.

The analysis of the complexity of the algorithm in terms of information exchanged
remains similar to the analysis in Section 3.4.5, i.e. it is O(n2 · Dsep′′max

max), but sep′′max

is now the maximum separator size along the successive linear variable orderings,
instead of along the pseudo-trees. The requirement that each variable may have
at most one child is likely to make this exponent increase. In terms of number of
ElGamal cryptographic operations, in addition to the cost of rerooting the variable
ordering (Section 3.4.5), the algorithm also requires O(n2 ·Dsep′′max

max) encryptions, and
only O(n logDmax) collaborative decryptions.

68

3.6. Privacy Analysis

3.6 Privacy Analysis

The following analysis of the privacy properties of the various algorithms proposed in
this thesis is based on the standard assumption that all participants are honest, but
curious [Goldreich, 2009]. This means that each agent is assumed to faithfully execute
the corresponding algorithms, but is interested in learning as much as possible about
other agents, based on the messages it receives during the algorithm execution. As
already explained in Section 3.2.2, the initial knowledge of each agent is assumed to
only include the following:

• the names and domains of all the variables it controls;

• all constraints involving any one of the variables it controls;

• the names, domains and owners of all variables that are constrained with any
one of the variables it controls.

This section presents privacy guarantees about which additional information the
agent provably cannot discover about the overall problem, excluding the semi-private
information (Definition 8) that may inevitably be revealed by the values chosen for
its variables. As described in Section 3.1, this information can be classified in four
categories: agent privacy (Section 3.6.1), topology privacy (Section 3.6.2), constraint
privacy (Section 3.6.3), and decision privacy (Section 3.6.4). Table 3.1 summarizes the
privacy properties of each algorithm along these four categories.

Table 3.1: Privacy guarantees of various algorithms.

privacy type: agent topology constraint decision

P-DPOP(−) full partial partial partial
P3/2-DPOP(−) full partial partial full
P2-DPOP(−) full partial full full

MPC-Dis(W)CSP4 - partial partial partial

3.6.1 Agent Privacy

Recall (Definition 9) that agent privacy relates to no agent being able to discover the
identities of non-neighboring agents (i.e. agents it does not share a constraint with).
There are only two ways the identity of an agentA could be leaked to a non-neighborB:

1. The algorithm can require A and B to exchange messages with each other;

2. Agent A can receive a message whose content refers identifiably to B.

69

Chapter 3. Strong Privacy Guarantees in DCOP

The former case can never happen in any of our algorithms, because they only ever
involve exchanging messages with neighboring agents. The latter case is addressed
mainly through the use of codenames.

Agent Privacy in P-DPOP(−)

Theorem 4. The P-DPOP(−) algorithms (Algorithm 13 and its variant in Section 3.3.6)
guarantee agent privacy.

Proof. The P-DPOP(−) algorithms proceed in the following sequential phases:

Root variable election (Algorithm 14) The messages exchanged only contain large,
random numbers, which cannot be linked to any specific agent. In particular,
the elected root variable is only revealed to the agent that owns it; other agents
cannot discover the identity of this owner agent.

Pseudo-tree construction (Algorithm 6) All messages are empty tokens that contain
no payload other than their types (CHILD or PSEUDO).

Bottom-up UTIL propagation (Algorithm 15) Each UTIL message contains only a
function (line 12) over a set of variables, whose names, if transmitted in clear
text, could identify their owner agent to the recipient of the message. To patch
this potential violation of agent privacy, the P-DPOP(−) algorithms replace all
variable names with secret, random codenames, as follows.

Consider a variable x in the pseudo-tree. First note that no UTIL message sent
by x or by any ancestor of x can be a function of x. The message sent by x is not
a function of x, because x is projected out before the message is sent (line 23).
Variable x cannot re-appear in any UTIL message higher in the pseudo-tree,
because no agent’s local problem can involve any variable lower in the pseudo-
tree (line 3).

Similarly, consider now the UTIL message sent by a descendant y of x in the
pseudo-tree, and assume first that y is a leaf of the pseudo-tree. Since y has no
children, it will not receive any UTIL message, and therefore the UTIL message
it sends can only be a function of the variables in its local problem. If this local
problem involves x, y will replace x by its codename x̃y (line 6) before it sends its
UTIL message. One can then prove by inference that no UTIL message sent by any
variable between y and x will contain x either; it can only (and not necessarily)
contain one or several of its codenames x̃yi .

Since the codenames x̃yi are random numbers chosen by x (Algorithm 13, line 6),
and only communicated (through channels that are assumed secure) to the
respective neighbors yi of x (Algorithm 13, line 9), no non-neighbor of x receiving
a message involving any x̃yi can discover the identity of its owner agent.

70

3.6. Privacy Analysis

The domain Dx of variable x could also contain values that might identify its
owner agent. To fix this privacy risk, x’s domain is also replaced by obfuscated
domains D̃yi

x of random numbers, similarly to the way variable names are obfus-
cated. In this paper, we also make the simplifying assumption that all variables
have the same domain size, so that the domain size of a variable does not give
any information about the identity of its owner agent. This assumption naturally
holds in many problem classes; when it does not hold, variable domains can be
padded with fake values in order to make them all have the same size.

Top-down VALUE propagation (Section 3.3.4) The VALUE messages exchanged only
contain assignments to variables (Algorithm 13, line 21), which are obfuscated
using the same codenames as in the previous phase.

This concludes the proof that, in the P-DPOP(−) algorithms, no agent can receive any
message from which it can infer the identity of any non-neighboring agent. Agent
privacy is therefore guaranteed.

Agent Privacy in P3/2-DPOP(−)

Theorem 5. The P3/2-DPOP(−) algorithms (Algorithm 16 and its variant in Section 3.3.6)
guarantee agent privacy.

Proof. Recall that the P3/2-DPOP(−) algorithms differ from P-DPOP(−) in the introduc-
tion of a rerooting procedure, which replaces the top-down VALUE propagation in
P-DPOP(−). This rerooting procedure itself requires the introduction of a modified
pseudo-tree construction algorithm that also assigns unique IDs to variables, and of a
message routing procedure along a circular variable ordering. The rerooting procedure
also involves the collaborative decryption of ElGamal cyphertexts.

Unique variable ID assignment (Algorithm 17) Each message only contains an up-
per bound on the number of variables already visited, which cannot be used to
make inferences about the identities of agents.

Circular message routing (Algorithm 18) The goal of this algorithm is precisely to
address agent privacy issues in the pseudo-tree rerooting procedure, which
involves each variable sending a message to the previous variable in a circular
ordering of the variables. There is no guarantee that there exist a circular ordering
such that any two consecutive variables are owned by neighboring agents, which
is necessary to protect agent privacy. Therefore, Algorithm 18 is responsible for
routing these messages through paths that only involve communication between
neighboring agents.

71

Chapter 3. Strong Privacy Guarantees in DCOP

The routing procedure itself only involves encapsulating the routed messages
inside PREV or LAST messages, which do not contain any other payload. There-
fore, as long as the routed messages do not contain information that can be used
to identify a non-neighboring agent, the routing procedure guarantees agent
privacy.

Pseudo-tree rerooting (Algorithm 19) The VECT messages exchanged by the prelimi-
nary SHUFFLEVECTORS() procedure contain three payloads: a variable ID, a vector
of ElGamal encryptions of−1, 0 or 1 (Algorithm 16, line 3), and a round number.
The variable ID is used by the recipient agent to detect whether the vector is its
own (modified) vector, of whether it belongs to another agent. This ID is a large
random number chosen by the owner agent (Algorithm 19, line 1), and therefore
cannot be linked to the identity of this owner agent by any other agent. The
ElGamal vector and the round number do not contain either any information
that could be used to identify the agent. Also note that the procedure used to
exchange ElGamal public key shares (Algorithm 16, lines 4 to 11) does not leak
any information about agents’ identities.

The SHUFFLEVECTORS() procedure is only run once, as a preliminary step to
rerooting the pseudo-tree. Every time such a rerooting must be performed,
it is the REROOT() procedure that is called. This procedure makes use of the
collaborative decryption algorithm, whose properties in terms of agent privacy
are discussed below.

Collaborative decryption (Algorithm 20) This procedure involves exchanging mes-
sages that only contain the ElGamal cyphertext to be decrypted, and a codename
that saves the same purpose as the variable ID in Algorithm 19. This codename is
similarly set to a large random number chosen by the current agent, and cannot
be linked to the identity of this agent by any other agent.

This concludes the proof that the P3/2-DPOP(−) algorithms guarantee agent privacy.

Agent Privacy in P2-DPOP(−)

Theorem 6. The P2-DPOP(−) algorithms (Section 3.5 and the variant in Section 3.3.6)
guarantee agent privacy.

Proof. The only changes introduced in P2-DPOP(−) with respect to P3/2-DPOP(−) are a
modified UTIL propagation, and an additional step to find an optimal value for the
root variable.

ElGamal UTIL propagation (Algorithm 21) From the point of view of agent privacy,
this is the same procedure as Algorithm 15, but using Algorithm 18 for message

72

3.6. Privacy Analysis

routing, both of which algorithms have already been shown to guarantee agent
privacy.

Root variable assignment (Algorithm 23) This consists in iteratively calling the pro-
cedure in Algorithm 20, which has also already been shown to guarantee agent
privacy.

This concludes the proof that the P2-DPOP(−) algorithms guarantee agent privacy.

3.6.2 Topology Privacy

Recall (Definition 10) that topology privacy is about preventing any agent from discov-
ering information about topological constructs of the constraint graph that it is not
involved in.

Topology Privacy in P-DPOP−

Theorem 7. The P-DPOP− algorithm (Section 3.3.6) guarantees partial topology privacy.
An upper bound on the diameter of the constraint graph is leaked, and a variable might
also be able to discover:

• a lower bound on a neighbor variable’s degree in the constraint graph;

• a lower bound on the total number of variables;

• bounds on the length of a cycle it is involved in.

Proof. The following analyses the properties of the P-DPOP− algorithm, from the point
of view of topology privacy.

Root variable election (Algorithm 14) Conceptually, this algorithm uses a viral prop-
agation mechanism to compute and reveal to all agents the maximum variable
score across the constraint graph. Each variable’s score is chosen as a large ran-
dom number (line 1), so that revealing the maximum score to all agents does not
reveal any topological information about the variable that has been assigned this
maximum score. To decide when to stop the viral propagation, the algorithm
assumes that the agents know an upper bound φmax on the constraint graph
diameter, which is a minor leak of topology privacy.

During each round of this viral propagation procedure, each variable receives
scores max1, . . . ,maxk from its k neighboring variables, and then replies with
a score max at least equal to max(max1, . . . ,maxk) (the same max is sent to all

73

Chapter 3. Strong Privacy Guarantees in DCOP

neighbors). By analyzing the history of scores received from its neighbors, an
agent may be able to make inferences about the topology of the constraint graph;
Algorithm 14 includes a number of mechanisms to prevent this leak of topology
privacy.

Let us first consider whether it is possible for a variable x to discover the existence
of non-neighboring variables. In a pure viral propagation procedure, during the
first round, x would receive the scores of all its neighbors. Any message received
during a later round and containing a new, different score would reveal the
existence of a non-neighboring variable with that score. To prevent such an
inference, agents are required to under-report their respective scores during a
positive, bounded number of rounds. More precisely, if an agent’s score is greater
than the maximum score it has seen in previous rounds, instead of reporting its
true score, it sends to its neighbors a random number lower than its score. This
number is still required to be greater than the maximum score seen so far, so that
neighbors cannot detect that the agent lied. As long as its neighboring variable y
could still be lying, x cannot conclude whether an unknown max received from y

is due to a lie by y or whether y received it from a third variable at the previous
round. However, to guarantee termination, agents can only be allowed to lie
during a bounded number of rounds (in this algorithm, at most 2φmax rounds).
Therefore, after (2φmax + 1) rounds, if x receives an unknown max from y, it will
still be able to infer that y has another neighbor, which cannot be a neighbor
of x otherwise x would have received the max from that neighbor at the previous
round. However, nothing else is leaked about the identity of that other variable.

Let us now consider whether a variable x can discover the existence of an edge
in the constraint graph between two neighboring variables y and z, based on
the respective max values it receives from them. The effect of the existence
of an edge between y and z is that, if z sends max(k)

z at round k, x and y will
both receive it at round (k + 1). Therefore, if x also receives max(k)

z from y at
round (k + 2), x might be tempted to infer that y probably received it from z at
iteration (k+ 1), and therefore that y and z are neighbors. However this inference
would be unfounded, because it is actually equally probable that y and z are
non-neighbors, and that max(k)

z was originally sent at round j < k by another
variable that is at distance (k− j) from z and (k− j + 1) from y. This is illustrated
in Figure 3.7. To sum it up, x might be able to detect with some probability the
existence of a cycle of length at most 2k + 1 involving x, y and z. In the most
extreme case of k = 1, in this context x might be able to discover that y and z are
neighbors. Notice however that it might be possible to fix this privacy leak by
having each agent report a different under-estimated max to each of its neighbors
in a given round; the consequences of such a change to the algorithm remain to
be investigated.

Finally, it is important to ask oneself whether the algorithm leaks any information

74

3.6. Privacy Analysis

round k − 2 round k − 1 round k

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

Figure 3.7: Two indistinguishable timelines from x’s point of view.

about the position of the elected variable in the constraint graph. Notice that
if such information were leaked, this would not necessarily be considered a
violation of topology privacy (except if it revealed the existence of a non-neighbor
variable); however, the knowledge of the position of the root of the pseudo-tree
could be useful to the agents in order to make inferences during the following
steps of the algorithm. In a pure viral propagation procedure, by observing
the round at which the maximum score was received from each neighbor, an
agent would be able to infer the distance (in number of edges) between that
neighbor and the elected root. In particular, if the root were a neighbor, the agent
would discover it. Algorithm 14 prevents this by requiring that agents lie at least
φmax times, where φmax is an upper bound on the graph diameter, i.e. on the
distance between any pair of variables. This way, the maximum score will only
be received after at least φmax rounds, which therefore does not leak any useful
information.

Pseudo-tree construction (Algorithm 6) This algorithm performs a depth-first traver-
sal of the constraint graph, starting with the elected root. A single CHILD token
is passed around by each variable to its unvisited neighbors. When the token is
received by a variable that has already been visited, a back-edge is discovered,
and the recipient replies with a PSEUDO token. When a variable has finished
traversing its subtree, it returns the CHILD token to its parent.

After running the algorithm, each variable’s knowledge of the chosen pseudo-tree
is limited to the following:

• The variable knows its parent variable, which is necessarily a neighbor in
the constraint graph, therefore this does not violate topology privacy.

• The variable knows its pseudo-parents, which are also neighbors. For each

75

Chapter 3. Strong Privacy Guarantees in DCOP

such pseudo-parent, the variable discovers the existence of a cycle in the
constraint graph, involving itself, its parent, and the given pseudo-parent.
This is tolerated by the definition of topology privacy, since the variable is
involved in this cycle.

Since there exists a treepath in the pseudo-tree from the root, through all
its pseudo-parents, to itself, and since there exists a back-edge between
itself and the highest of its pseudo-parents, the variable also discovers the
existence of a long cycle involving all these variables. This is also tolerated
by our definition of topology privacy, since the variable is also involved in
this cycle. Furthermore, notice that the variable does not know the order in
which its pseudo-parents are arranged in the pseudo-tree and in the cycle.

Notice also that the variable does not discover the existence of possible
ancestors in the pseudo-tree other than its neighbors.

• The variable knows its children, which are also neighbors. Because each
child is in a different branch of the pseudo-tree, the variable can infer that
there does not exist any constraint between any of its children. This is
tolerated by the definition of topology privacy.

• The variable knows its pseudo-children, which are also neighbors. Further-
more, it knows below which of its children each pseudo-child is situated in
the pseudo-tree. Therefore, for each pseudo-child below any given child,
the variable discovers the existence of a cycle involving itself, the child and
the pseudo-child. This is tolerated since the variable is involved in this cycle.

Moreover, like for its parent and pseudo-parents, for each child, the variable
discovers the existence of a long cycle involving itself, the given child, and
all pseudo-children below that child. And, unlike for pseudo-parents, the
variable can infer the order of its pseudo-children in the cycle, based on
the order in which the CHILD token has been received from the pseudo-
children. This is also tolerated by the definition of topology privacy, since
the variable is involved in that cycle.

Finally, like for children, the variable discovers the absence of constraints
between any two (pseudo-)children located below two different children,
which is tolerated. The variable does not discover the existence of possible
descendants other than its neighbors.

Bottom-up UTIL propagation (Algorithm 15) During this phase, each variable x re-
ceives one UTIL message from each of its children, containing a cost function,
whose scope might reveal topological information. Notice that each variable y in
this scope is represented by a secret codename ỹ (and so is the corresponding
domain of values); however x may be able to decrypt the codename ỹ, if and only
if y is a neighbor of x (or is x itself), because y has then sent the same codename ỹ
to all its neighbors. This results in a leak of topology privacy: x discovers, for each
neighboring ancestor y, whether y has at least one other neighbor below a given

76

3.6. Privacy Analysis

child of x. But it cannot discover exactly how many of these other neighbors
there are; in particular, there might be only one, and it might be one of x’s known
pseudo-children (if any).

Furthermore, if x is unable to decrypt the codename ỹ, it can infer the existence
of another, non-neighboring ancestor that this codename corresponds to. This
is another breach of topology privacy. Because y sent the same codename ỹ to
all its neighbors, x is also able to discover whether that other ancestor (which it
only knows as ỹ) has at least one neighbor below each of x’s children (and that
neighbor might be one of x’s known pseudo-children, if any). Moreover, since
codenames are large, random numbers that are almost surely unique, x may
discover the existence of several, distinct such non-neighboring ancestors.

Top-down VALUE propagation (Section 3.3.4) Each variable receives a message from
its parent, which can only contain codenames for variables and variable values
that were already present in the UTIL message received during the previous
phase.

This concludes the proof that P-DPOP− only partially protects topology privacy. Notice
that the limited topology information that is leaked to any variable can only concern
its branch in the pseudo-tree; no information can be leaked about any other branch,
not even their existence.

Topology Privacy in P-DPOP

Theorem 8. The use of different codenames for each (pseudo-)child improves the topol-
ogy privacy in P-DPOP compared to P-DPOP−, but P-DPOP can still leak the same
bounds as P-DPOP−.

Proof. Consider a variable x that receives a UTIL message including a secret code-
name ỹ that corresponds to variable y (assumed 6= x). Because y now sends a different
codename to each of its neighbors, x is no longer ever able to decrypt ỹ, even if y is
a neighbor of x. As a consequence, x is no longer able to infer whether ỹ refers to a
known neighbor of x, or to an unknown, non-neighboring variable. However, since
each codename now corresponds to a unique back-edge in the pseudo-tree, for each
pair (α, β) of unknown codenames in x’s received UTIL message (if such a pair exists),
at least one of the following statements must hold:

• α and β refer to two different ancestors of x, and therefore x discovers at it has at
least two ancestors (which it might not have known, if it has no pseudo-parent);
and/or

77

Chapter 3. Strong Privacy Guarantees in DCOP

• α and β were sent to two different descendants of xbelow (and possibly including)
the sender child y, and therefore x discovers that it has at least two descendants
below (and including) y (which it might not have known, if it has no pseudo-child
below y).

Therefore x might be able to refine its known lower bound on the total number of
variables in the problem.

Topology Privacy in P3/2-DPOP(−)

Theorem 9. The P3/2-DPOP(−) algorithms (Algorithm 16 and its variant in Section 3.3.6)
guarantee partial topology privacy. Each variable unavoidably discovers the total num-
ber of variables in the problem, an upper bound on the constraint graph diameter, and
might also discover:

• a lower bound on a neighbor variable’s degree in the constraint graph;

• bounds on the length of a cycle it is involved in;

• the fact that there exists at least one other branch in the constraint graph that it is
not involved in.

The advantages of P3/2-DPOP over P3/2-DPOP− are the same as P-DPOP over P-DPOP−.

Proof. The main difference with P-DPOP(−) is that there is no VALUE propagation, but
rather one UTIL propagation phase per variable in the problem, each variable being
root of the pseudo-tree in turn. Therefore, the total number of variables inevitably
becomes public knowledge. The following paragraphs analyze the properties, in terms
of topology privacy, of each phase of P3/2-DPOP(−) that is not already present in the
P-DPOP(−) algorithms.

Unique variable ID assignment (Algorithm 17) This is a modification of the depth-
first traversal of the constraint graph in Algorithm 6, which has already been
shown to guarantee full topology privacy. One difference is that the messages
also carry an integer id, which is an upper bound on the number of variables
visited so far.

• When receiving a CHILD message from its parent, variable x discovers
that there exist at most id other variables in the problem that have already
been visited. These variables are either ancestors of its parent, or descen-
dants of its parent in another branch of the pseudo-tree. To make sure this
bound is loose and uninformative, each variable adds a random number

78

3.6. Privacy Analysis

in [incrmin . . . 2incrmin] to its id, where incrmin is a free parameter of the al-
gorithm. In particular, this prevents the case id = 1, which would allow
x to infer that its parent is the root of the pseudo-tree, and that x is its
first child. Variable x also discovers that there exist at least bid/(2incrmin)c
already-visited variables. These two bounds are not informative about the
topology of the constraint graph, since the total number of variables is
revealed anyway.

• When receiving a CHILD message from a child y, variable x can compare
the id it contains with the id it previously sent to y. The difference ∆id ≥
incrmin is an upper bound on the number of y’s descendants; the parameter
incrmin can be chosen as large as necessary to make this bound as loose as
desired. Variable x also discovers that b∆id/(2incrmin)c is a lower bound on
the number of y’s descendants.

• The id contained in a PSEUDO message does not provide any information,
as it is equal to the id in the CHILD message to which the PSEUDO message
is a response. In fact, id could be removed from the PSEUDO message; it has
only be left in Algorithm 17 for the sake of conciseness of the pseudo-code.

Once all variables have been assigned unique IDs, the last such ID is revealed to
all variables (and is recorded as n+). This reveals an upper bound on the total
number of variables, which is useless since the exact total number of variables is
later revealed anyway. However, it also reveals to each variable whether it is the
last visited variable, i.e. the last leaf of the pseudo-tree. This is another, minor
leak of topology privacy, since the leaves of the pseudo-tree that are not the last
leaf discover that there exists at least one other branch in the pseudo-tree (and
therefore in the constraint graph) that they are not involved in.

Exchange of ElGamal key shares (Algorithm 16, lines 4 to 11) The P3/2-DPOP(−) algo-
rithms involve each variable sharing a certain number of ElGamal key shares
with all other variables. The corresponding SHARE messages do not contain
any information that could be used to make inferences about the topology of
the constraint graph. These messages are routed circularly through all variables
using a mechanism whose properties in terms of topology privacy are discussed
below.

Circular message routing (Algorithm 18) The purpose of this algorithm is for vari-
ables to be able to propagate messages along a circular variable ordering, with-
out the need to know any additional topological information about the con-
straint graph, other than the knowledge of their respective (pseudo-)parents
and (pseudo-) children in the pseudo-tree. In particular, the method TOPREVI-
OUS() makes it possible to send a message to the previous variable in the circular
variable ordering, without knowing which variable this is.

79

Chapter 3. Strong Privacy Guarantees in DCOP

• The reception of a (PREV, M) message only indicates that the sender child
wants the included message M to be delivered to its previous variable. This
previous variable is either the recipient of the PREV message itself, or an
unknown descendant thereof.

• The reception of a (LAST, M) message from one’s parent indicates that an
unknown variable (either the — unknown — root of the pseudo-tree, or the
unknown child of an unknown ancestor, in another branch) wants M to
be delivered to its previous variable, and that this previous variable is one’s
descendant in the pseudo-tree.

Pseudo-tree rerooting (Algorithm 19) The goal of the procedure SHUFFLEVECTORS()
is for each variable to apply a given operation to a vector initially sent by each
variable. VECT messages are propagated along a circular variable ordering using
the previous message routing algorithm. A received VECT message contains the
following information:

• id identifies the owner of the vector; being a secret, large random number,
only the owner of the vector can identify itself;

• the vector is encrypted (and re-encrypted after each operation) and there-
fore cannot provide any topological information;

• the round number can take the following values:

– round = 1 indicates that the vector is being modified, each variable
setting in turn some of the values to−1;

– round = 2 indicates that the vector is being sent to the root of the
pseudo-tree. This does not happen for the vector belonging to the
(unknown) root;

– round = 3 indicates that the vector is being shuffled by each variable in
turn;

– round = 4 indicates that the vector is on its way back to its owner. This
does not happen for the vector belonging to the (unknown) root.

Once the preliminary procedure SHUFFLEVECTORS() has been completed, re-
rooting the pseudo-tree actually consists in calling the procedure REROOT(),
which makes use of the collaborative decryption algorithm whose properties are
described below.

Collaborative decryption (Algorithm 20) This algorithm involves passing around a
DECR message along the circular variable ordering. The message contains a se-
cret codename identifying the original sender variable, which is the only variable
capable of deciphering this codename, since it chose it itself as a large, random
number. The last part of the message payload is an ElGamal cyphertext, which
remains encrypted until it reaches back the original sender, and therefore does
not leak any topological information.

80

3.6. Privacy Analysis

This concludes the proof that the P3/2-DPOP(−) algorithms guarantee partial topology
privacy.

Topology Privacy in P2-DPOP(−)

Theorem 10. The P2-DPOP(−) algorithms (Section 3.5 and the variant in Section 3.3.6)
guarantee partial topology privacy. The limited leaks of topology privacy are the same
as for P3/2-DPOP(−).

Proof. With respect to P3/2-DPOP(−), there are only two differences in the algorithm:
the UTIL propagation is performed along a linear variable ordering, and choosing a
value for the root variable requires collaborative decryption.

ElGamal UTIL propagation (Algorithm 21) To exchange UTIL messages along a lin-
ear variable ordering, the algorithm makes use of the circular message routing
procedure, which has already been shown to guarantee full topology privacy.
However, the last variable in the linear ordering needs to know it is the last in
order to initiate the UTIL propagation; therefore, by contraposition, non-last
variables know they are not the last, and, in particular, non-last leaves of the
pseudo-tree discover the existence of another branch. This minor leak of topol-
ogy privacy is already present in the unique variable ID assignment algorithm
anyway. Besides this, the topology privacy properties of the UTIL propagation
phases in P2-DPOP− and P2-DPOP are the same as in P-DPOP− and P-DPOP,
respectively.

Root variable assignment (Algorithm 23) This algorithm involves recursively calling
the collaborative decryption procedure, which has been shown to guarantee full
topology privacy.

This concludes the proof that the P2-DPOP(−) algorithms guarantee partial topology
privacy.

3.6.3 Constraint Privacy

Recall (Definition 11) that constraint privacy is about protecting the knowledge of the
costs of various assignments of values to variables, based on one or more constraints
between these variables.

81

Chapter 3. Strong Privacy Guarantees in DCOP

Constraint Privacy in P-DPOP(−)

Theorem 11. The P-DPOP(−) algorithms (Algorithm 13 and its variant in Section 3.3.6)
guarantee partial constraint privacy. The local optimal cost of a subproblem with respect
to a partial variable assignment may be revealed. In the Max-DisCSP case, the feasibility
of such a partial assignment may be revealed, even though the partial assignment
cannot be extended to an overall feasible solution (and therefore this is not semi-private
information).

Proof. Information about constraints is only transmitted during the UTIL propagation
phase (Algorithm 15). With the help of the knowledge of the optimal variable assign-
ments transmitted during the top-down VALUE propagation phase (Section 3.3.4),
some of the cost information may be decrypted.

Single-variable UTIL messages In the DCOP case, all costs in the single-variable UTIL
message received by a variable px remain in clear text. However, recall that the
properties of P-DPOP(−) in terms of topology privacy guarantee that, if the sender
of the UTIL message is a leaf of the pseudo-tree, px will not be able to discover it.3

Therefore, px cannot conclude that the message contains constraint information
about a single variable, instead of containing aggregated information about
multiple variables’ constraints.

In the Max-DisCSP case, the message has been obfuscated by adding secret
random numbers only to its infeasible entries (line 9). Feasible entries are not ob-
fuscated and remain equal to 0, and therefore variable px is able to identify which
of the message entries refer respectively to feasible or infeasible assignment to px.

However, the addition of a secret, positive, random number to each infeasible
entry makes sure that only a loose upper bound on the number of constraint
violations is leaked, and the exact number of constraint violations remains secret.
This upper bound can be made as loose as desired by choosing random numbers
as large as necessary; however, these random numbers must remain significantly
smaller than the ones used for obfuscating multi-variable messages (see below).

Multi-variable UTIL messages If the UTIL message involves at least one other vari-
able ỹi, then all entries of the message have been obfuscated by adding large
random numbers keyxyi(ỹ

x
i) (line 26). These random numbers should be signifi-

cantly larger than the ones used to obfuscate infeasible entries in single-variable
messages (in the Max-DisCSP case), so that obfuscated feasible and infeasible en-
tries are indistinguishable. Furthermore, keyxyi(ỹ

x
i) is only known to the sender x

of the message and to its pseudo-parent yi, but not to the recipient px, which
therefore cannot subtract it back to de-obfuscate the feasibility entries.

3We have seen before that the reverse is false: px might be able to discover that a child is not a leaf.

82

3.6. Privacy Analysis

Let us assume, for the sake of simplicity, that the message m(p̃x, ỹxi) involves only
the two variables p̃x and ỹxi ; the argument extends easily to more variables. The
recipient px might be able to make inferences in two different ways: 1) by fixing
ỹxi and comparing the obfuscated entries corresponding to different values for p̃x;
or 2) by fixing p̃x and varying ỹxi instead.

1. For a given value of ỹxi , all cost entries have been obfuscated on line 26 by
adding the same random number keyxyi(ỹ

x
i). Therefore, the recipient is able

to compute the relative differences of cost values for various assignments
to p̃x. However, it is unable to decrypt the absolute values, since it does
not know keyxyi(ỹ

x
i). In particular, it is incorrect to assume that the lowest

obfuscated value for a given value of ỹxi is equal to keyxyi(ỹ
x
i), because the

lowest cost value does not necessarily decrypt to 0.

There is one exception to this argument, in the Max-DisCSP case: if a fea-
sible solution is found to the problem in which ỹxi = ỹxi

∗
and p̃x = p̃x

∗,
then it is necessarily the case that m(p̃x

∗, ỹxi
∗
) decrypts to 0 (since the so-

lution is feasible), and therefore the recipient of the UTIL message will be
able to infer keyxyi(ỹ

x
i
∗
). After fixing ỹxi = ỹxi

∗
in the message and subtract-

ing keyxyi(ỹ
x
i
∗
), the same reasoning can be made as for the single-variable

case, in which feasible and infeasible entries are identifiable, but the num-
bers of constraint violations for infeasible entries remain obfuscated.

2. For a given value of p̃x, each cost value m(p̃x, ỹxi) has been obfuscated by
adding a different, secret random number keyxyi(ỹ

x
i). Choosing these ran-

dom numbers sufficiently large makes sure that no useful information (rela-
tive, or absolute) can be obtained by comparing the obfuscated cost values.

This concludes the proof that the P-DPOP(−) algorithms guarantee partial constraint
privacy.

Constraint Privacy in P3/2-DPOP(−)

The constraint privacy properties of the P3/2-DPOP(−) algorithms differ slightly from
those of P-DPOP(−), because the former protect decision privacy (which is indirectly
beneficial to constraint privacy), but also reveal the total number of variables in the
problem (which can hurt constraint privacy).

Theorem 12. The P3/2-DPOP(−) algorithms (Algorithm 16 and its variant in Section 3.3.6)
guarantee partial constraint privacy. The leaks are the same as in P-DPOP(−), but they
happen less frequently.

Proof. Single-variable UTIL messages leak the same amount of constraint privacy as
in P-DPOP(−); notice however that, since the P3/2-DPOP(−) algorithms now reveal the

83

Chapter 3. Strong Privacy Guarantees in DCOP

total number of variables, in some circumstances it may be possible for a variable to
discover that a child is a leaf, and that the UTIL message it sends therefore contains
information about its local subproblem only.

In the Max-DisCSP case, multi-variable UTIL messages now leak potentially much less
information, for the following reason. Consider again the simpler and non-restrictive
case of a two-variable message m(p̃x, ỹxi) received by p̃x. Because decision privacy is
now guaranteed, p̃x no longer discovers the value ỹxi

∗
chosen for ỹxi , and is therefore

no longer able to infer which of the entries corresponding to p̃x = p̃x
∗ decrypts to 0.

One exception to this is when the following three conditions simultaneously hold: 1)
P3/2-DPOP− is used, 2) the codename ỹxi refers to a variable yxi that is a neighbor of p̃x,
and 3) ỹxi

∗
is semi-private information to p̃x; then p̃x will still discover ỹxi

∗
, and will be

able to make the same inferences as in P-DPOP(−). If the first condition is not satisfied,
i.e. P3/2-DPOP is used, then p̃x will not be able to link the codename ỹxi to any known
variable. This is also the case if P3/2-DPOP− is used, but the second condition does not
hold. Finally, if the first two conditions hold, p̃x will only be able to discover ỹxi

∗
if it is

semi-private information, i.e. if it can infer it only from its knowledge of the problem,
and of its own chosen value p̃x∗.

Constraint Privacy in P2-DPOP(−)

Theorem 13. The P2-DPOP(−) algorithms (Section 3.5 and the variant in Section 3.3.6)
guarantee (full) constraint privacy.

Proof. The P2-DPOP(−) algorithms fix all the leaks of constraint privacy in P<2-DPOP(−),
by replacing the cryptographically insecure obfuscation through addition of random
numbers, by the cryptographically secure ElGamal encryption (Section 3.2.1). This
makes it no longer possible to compare two encrypted cost values without decrypting
them, which would require the collaboration of all agents. In particular, while it is
possible to compute the min of two cyphertexts without decrypting them, the result
remains encrypted, and cannot be compared to the two inputs to decide which one is
the arg min.

3.6.4 Decision Privacy

Recall (Definition 12) that decision privacy is about hiding the values assigned to
variables in the chosen solution to the problem.

Theorem 14. The P-DPOP(−) algorithms (Algorithm 13 and its variant in Section 3.3.6)
guarantee partial decision privacy. The leak of decision privacy lies in the fact that a
variable might discover the respective values chosen for some or all of its neighboring
variables.

84

3.7. Experimental Results

Proof. First notice that the algorithm cannot leak any information about the chosen
values for variables that are lower in the pseudo-tree, since these variables have been
projected out of the UTIL messages received. However, during the VALUE propagation
phase, each variable receives a message from its parent that contains the chosen values
for its parent and pseudo-parents. The message may also contain the values chosen for
other, non-neighboring variables, but the recipient of the message will not be able to
decode the codenames used to obfuscate these values. Furthermore, variable domains
are shuffled using secret permutations to make it impossible to decode the codename
for the value of a non-neighboring variable from its index in the variable’s domain.

Theorem 15. P3/2-DPOP(−) and P2-DPOP(−) (Algorithm 16 and Section 3.5, and the
variants in Section 3.3.6) guarantee (full) decision privacy.

Proof. The leak of decision privacy in P-DPOP(−) is fixed by removing the VALUE prop-
agation phase. Instead, the variable ordering is rerooted, and the UTIL propagation
phase is restarted. Notice that it is not possible to compare the UTIL messages received
from one iteration to the next in an attempt to infer the decision that has been made
at the previous iteration: the messages are not comparable, since different codenames
and obfuscation keys are used.

3.7 Experimental Results

This section reports the empirical performance of the various algorithms considered
in this paper, on four classes of DisCSP benchmarks: graph coloring (Section 3.7.1),
meeting scheduling (Section 3.7.2), resource allocation (Section 3.7.3), and game
equilibrium (Section 3.7.4). We also report results on the DisWCSP class of multi-
agent Vehicle Routing Problems (Section 3.7.5). For each problem class, the choice
of the Dis(W)CSP formulation is crucial, because it dictates how the four types of
privacy defined based on the problem constraint graph will relate to the actual privacy
of the original problem. In particular, as discussed in Section 3.2.2, the P∗-DPOP
algorithms use the standard assumption that each constraint is known to all agents
owning a variable in its scope. Therefore, when an agent wants to hide a constraint from
neighboring agents, it must express its constraint over copies of its neighbors’ variables.
Additional equality constraints must be introduced to make copy variables equal to
their respective original variables. On the other hand, the MPC-Dis(W)CSP4 algorithms
do not make use of this assumption, and therefore do not need the introduction of
copy variables.

The three performance metrics considered are simulated time [Sultanik et al., 2007],
number of messages, and total amount of information exchanged; for each metric, we
report the median over at least 100 problem instances, with 95% confidence intervals.
For the obfuscation of cost values in P<2-DPOP(−), we used 128-bit random numbers,

85

Chapter 3. Strong Privacy Guarantees in DCOP

while P2-DPOP(−) used 512-bit ElGamal encryption. MPC-Dis(W)CSP4 also used
512 bits for its Paillier encryption. For the unique variable ID generation procedure in
P>1-DPOP(−), the parameter incrmin was set to 10. All algorithms were implemented
inside the FRODO platform (Chapter 5), which was coupled with the CSP solver JaCoP
[2011] to speed up MPC-Dis(W)CSP4. The experiments were run on a 2.2-GHz, dual-
core computer, with Java 1.6 and a Java heap space of 2 GB. The timeout was set to
10 min (wall-clock time).

3.7.1 Graph Coloring

We first report the respective performances of the algorithms on random, pure DisCSP,
graph coloring problems. As mentioned in Section 2.2.1, one real-life example of
such graph coloring problems is the allocation of time schedules in a Time Division
Multiple Access (TDMA) scheme for an ad-hoc wireless network. The graphs were
randomly generated with varying numbers of nodes, and an edge density fixed to 0.4.
The number of colors was set to 3. Notice that in the DisCSP formulation, inter-agent
constraints are binary inequality constraints, and therefore decision privacy is relevant
to this problem class: knowing one’s chosen color is insufficient to infer the respective
colors of one’s neighbors. To study the tradeoff between privacy and performance in
MPC-DisCSP4, we also considered a variant that we denote MPC-DisCSP4−, in which
we assumed that all inter-agent inequality constraints are public — in other words, the
neighborhoods of nodes are public, and only the final choices of colors are protected.

In Figures 3.8 and 3.9, one can observe that the MPC-DisCSP4 algorithm (denoted
simply as MPC in these and all subsequent figures) scales very poorly: it times out
on problems involving more than 6 nodes. MPC-DisCSP4− performs much better;
however, as mentioned before, it only protects the final choices of colors. It also
exhibits an interesting phase transition, which is due to the fact that its complexity is
directly linked to the number of feasible solutions to the DisCSP. For small numbers
of nodes, the total state space is small, and MPC-DisCSP4− performs relatively well.
For numbers of nodes above 9, the problem instances are mostly infeasible (since the
constraint density and the number of colors remain constant), and MPC-DisCSP4−

quickly detects infeasibility without even having to exchange any message.

The most efficient algorithms by far are P-DPOP(−), whose curves are at least one order
of magnitude below all other algorithms. In particular, P-DPOP−’s runtime is sensibly
the same as DPOP, and the overhead in terms of communication is almost solely due
to the root election algorithm. The cost of improved topology privacy in P-DPOP vs.
P-DPOP− only starts to show for problem sizes above 7. Full decision privacy comes
at much higher costs: P3/2-DPOP(−)’s curve is between 1 and 3 orders of magnitude
above P-DPOP(−)’s, which suggests that rerooting the pseudo-tree (which involves
expensive cryptographic operations) is by far the complexity bottleneck, even when

86

3.7. Experimental Results

3 4 5 6 7 8 9 10

Number of nodes

101

102

103

104

105

106
Simulated time (in ms)

MPC
MPC−

P2-DPOP
P2-DPOP−

P
3
2 -DPOP(−)

P-DPOP
P-DPOP−

DPOP

Figure 3.8: Runtime performance on graph coloring problems.

3 4 5 6 7 8 9 10

Number of nodes

100

101

102

103

104

105

106
Number of messages

MPC
MPC−

P>1-DPOP(−) P-DPOP(−) DPOP

3 4 5 6 7 8 9 10

Number of nodes

103

104

105

106

107

108
Information exchanged (in bytes)

MPC
MPC−

P2-DPOP
P2-DPOP−

P-DPOP
P-DPOP−

P
3
2 -DPOP(−)

DPOP

3 4 5 6 7 8 9 10

Number of nodes

103
104
105
106
107
108

Information exchanged (in bytes)

MPC
MPC−

P2-DPOP
P2-DPOP−

P-DPOP
P-DPOP−

P
3
2 -DPOP(−)

DPOP

Figure 3.9: Communication performance on graph coloring problems.

full constraint privacy is additionally guaranteed, as in P2-DPOP−. Notice that the
slope decreases as the problem size increases; this is due to the fact that more and more
problems become infeasible, and the P>1-DPOP(−) algorithms are able to terminate
after the first iteration on infeasible problems. Like for P-DPOP vs. P-DPOP−, the cost
of improved topology privacy is only visible above 7 nodes; P2-DPOP even timed out
on problems of size 10. Finally, Figure 3.9 illustrates the fact that MPC-DisCSP4 tends
to send large numbers of small messages, while the P>1-DPOP(−) algorithms send
lower numbers of larger messages.

87

Chapter 3. Strong Privacy Guarantees in DCOP

3.7.2 Meeting Scheduling

We now report experimental results on random, pure DisCSP, meeting scheduling
benchmarks (Section 2.2.2). We varied the number of meetings, while keeping the
number of participants per meeting equal to 2. For each meeting, the participants were
randomly drawn from a common pool of 3 agents. The pool of agents was deliberately
chosen small to increase the complexity of the problems, by increasing the probability
that each agent take part in multiple meetings. The number of available time slots was

1 2 3 4 5 6

Number of meetings

101

102

103

104

105

106
Simulated time (in ms)

MPC
P2-DPOP
P2-DPOP−

P-DPOP
P-DPOP−

DPOP

Figure 3.10: Runtime performance on small meeting scheduling problems.

1 2 3 4 5 6

Number of meetings

100

101

102

103

104

105

106
Number of messages

MPC
P2-DPOP(−)

P-DPOP(−)

DPOP

1 2 3 4 5 6

Number of meetings

103

104

105

106

107

108
Information exchanged (in bytes)

MPC
P2-DPOP
P2-DPOP−

P-DPOP
P-DPOP−

DPOP

1 2 3 4 5 6

Number of meetings

103

104

105

106

107

108
Information exchanged (in bytes)

MPC
P2-DPOP
P2-DPOP−

P-DPOP
P-DPOP−

DPOP

Figure 3.11: Communication performance on small meeting scheduling problems.

88

3.7. Experimental Results

set to 8.

Notice that in the DisCSP formulation, all inter-agent constraints are binary equality
constraints, and therefore the P3/2-DPOP(−) algorithms do not bring any additional
decision privacy compared to P-DPOP(−), since the values of neighboring variables are
semi-private information; therefore, we do not report the performance of P3/2-DPOP(−).
For the MPC-DisCSP4 algorithm, we simplified the formulation by only introducing
one variable per meeting, owned by the initiator of the meeting. This way, for each
meeting, only its initiator is made public, but its exact list of participants remains
secret (it is only revealed a posteriori to the participants of the meeting when they
attend it).

As can be seen in Figures 3.10 and 3.11, P2-DPOP−’s performance is comparable to that
of MPC-DisCSP4 (but with much stronger privacy guarantees), although the former
sends significantly more information on the smallest problems, but significantly fewer
messages on the largest problems they could solve within the timeout. On the other
hand, because it is a majority threshold scheme, MPC-DisCSP4 actually could not
provide any privacy guarantees on problems of size 1, since they only involved 2 agents.
Both algorithms could only scale up to problems of size 4, and timed out on larger
problems. P2-DPOP’s increased topology privacy comes at a price that made it timeout
earlier than P2-DPOP−, on problems of size 4.

Like for graph coloring problems, the P-DPOP(−) algorithms remain the most efficient
algorithms by far: they perform between 1 and 2 orders of magnitude better than all
other algorithms, both in terms of runtime and information exchanged. And like for
graph coloring, the improved topology privacy in P-DPOP comes at a price that is
negligible for small problems, but can grow to one order of magnitude on problems of
size 6. In terms of runtime and information exchange, P-DPOP− is only worse than
DPOP by a small factor; however it sends approximately one order of magnitude more
messages.

Figures 3.12 and 3.13 report the performances of the various algorithms on larger meet-
ing scheduling problems, with 5 participants per meeting, and a pool of 10 agents. The
performance of MPC-DisCSP4 is degraded by approximately one order of magnitude
across all three metrics. On the other hand, the P∗-DPOP(−) algorithms perform com-
paratively much worse than on smaller problem instances: P2-DPOP was not able to
solve even single-meeting problems, P2-DPOP− could only solve single-meeting prob-
lems before it timed out, and P-DPOP was outperformed by MPC-DisCSP4 and could
only scale up to problems of size 2. All algorithms timed out on problems involving
4 meetings, including DPOP.

This dramatic loss of performance of DPOP-based algorithms can be explained by the
presence of 5-ary AllEqual constraints enforcing that all participants to each meeting

89

Chapter 3. Strong Privacy Guarantees in DCOP

agree on the time for the meeting. As a result, many UTIL messages will be expressed
over multiple variables which are in fact bound to be equal, which is very inefficient.
One way to fix this inefficiency and to allow DPOP-based algorithm to scale to larger
problems could be to decompose these AllEqual constraints into chains of binary
equality constraints based on the positions of the variables in the pseudo-tree. This
should make the DPOP-based algorithms much less sensitive to the arity of the AllEqual
constraints, and is left for future work.

1 2 3 4

Number of meetings

101

102

103

104

105

106
Simulated time (in ms)

P2-DPOP−

P-DPOP
MPC
P-DPOP−

DPOP

Figure 3.12: Runtime performance on large meeting scheduling problems.

1 2 3 4

Number of meetings

101

102

103

104

105

106
Number of messages

P2-DPOP(−)

MPC
P-DPOP(−) DPOP

1 2 3 4

Number of meetings

104

105

106

107

108

109
Information exchanged (in bytes)

P2-DPOP−

P-DPOP
MPC
P-DPOP−

DPOP

1 2 3 4

Number of meetings

104

106

108

1010

1012

1014

1016

1018

Information exchanged (in bytes)

P2-DPOP−

P-DPOP
MPC
P-DPOP−

DPOP

Figure 3.13: Communication performance on large meeting scheduling problems.

90

3.7. Experimental Results

3.7.3 Resource Allocation

Next, we performed experiments on pure DisCSP, resource allocation benchmarks
(Section 2.2.4). Random problem instances were produced using the combinatorial
auction problem generator CATS [Leyton-Brown et al., 2000], ignoring bid prices. We
used the temporal matching distribution, which models the allocation of takeoff and
landing slots at airports, fixing the total number of goods (i.e. resources) to 8, and
varying the numbers of bids. Each bid is a request for a bundle of exactly 2 resources
(a takeoff slot and a corresponding landing slot). Two requests may be placed by the
same airline company; each airline should get exactly one of its requests fulfilled.

Novel, Privacy-Friendly DisCSP Formulation

The DisCSP formulation proposed by Petcu [2007] for resource allocation problems
(actually, for Combinatorial Auctions) has undesirable properties in terms of privacy.
Since, for each given resource, the domain of each corresponding decision variable
is the list of consumers interested in the resource, this list of consumers is inherently
leaked by the problem formulation. To address this, we propose to use binary variables
instead, which indicate whether or not the owner consumer gets allocated the resource.
The list of consumers interested in a particular resource is also leaked by the scope of
the inter-agent constraint enforcing that the resource be only allocated to one of them.
To address this, we propose to introduce agents for the resource providers4, which own
copy variables over which this constraint is expressed.

To illustrate our DisCSP formulation, consider the simple example of three consumers
A, B and C, interested in two resources y and z. Consumer A is interested in getting
either one of the two resources (OR constraint), consumer B also wants either one,
but not both (XOR constraint), and consumer C wants either both resources or none
(equality constraint). We model this problem using two sets of decision variables x
and x̂. Variable xba is owned by the agent providing resource b, and takes the value 1 if
resource b is allocated to agent a, and 0 otherwise. Variable x̂ba is a copy variable owned
by agent a, and constrained to be equal to xba. Three types of constraints exist on these
variables:

1. Each resource b can only be assigned to at most one consumer, which is enforced
by the constraint

∑
i x

b
i ≤ 1. This constraint is private to the resource provider

for b.

2. Each consumer has private constraints on the feasible combinations of resource
assignments. For example, since consumer A is interested in getting at least one

4CATS assumes there is a single auctioneer, and does not specify which slot is at which airport in the
problem instances it generates; therefore in our experiments we have assumed that each resource was
provided by a separate resource provider.

91

Chapter 3. Strong Privacy Guarantees in DCOP

of the resources, this is expressed by the constraint x̂yAOR x̂zA.

3. Corresponding x and x̂ variables must have equal values.

This is illustrated in Figure 3.14. Like for the meeting scheduling problem class, all inter-
agent constraints are equality constraints, therefore we do not report the performance
of P3/2-DPOP(−), whose decision privacy guarantees are the same as P-DPOP(−).

x̂zBx̂yB

B

xzCxzA

xzB

z

x̂zC��
��

x̂yA ��
��

x̂zA

A

x̂yC

C

��
��

��
��

��
��xyCxyA

xyB

y

Σ ≤ 1

OR XOR =

=

��
��

��
��

��
��

��
��

��
��

��
��

��
��
Σ ≤ 1

=====

Figure 3.14: DisCSP formulation for a resource allocation problem.

For MPC-DisCSP4, the DisCSP formulation was simplified by not introducing copy
variables hold by consumers, since they are not necessary to protect constraint privacy:
consumers can request resources by expressing constraints directly over the variables
owned by the resource providers, without revealing these constraints. However, since
MPC-DisCSP4 assumes that all variables are public, in order to increase topology
privacy we introduced, for each resource, as many variables as consumers, regardless
of whether they are actually interested in the resource. To reduce the size of the search
space, we assumed that the Σ ≤ 1 constraints were public.

Experimental Results

Figures 3.15 and 3.16 show that the performance of MPC-DisCSP4 decreases very fast
with the number of requests, such that the algorithm was not able to scale beyond
problems of size 4. The P2-DPOP(−) algorithms seem to scale better, and were able to
solve problems involving 5 requests. On all three metrics, both algorithms were largely
outperformed by P-DPOP(−), whose runtime curve is remarkably flat, and almost
overlaps with the runtime curve of DPOP. The overhead of P-DPOP(−) compared to
DPOP is slightly larger in terms of information exchanged, and goes up to one order
of magnitude in terms of number of messages. On this problem class, and for these

92

3.7. Experimental Results

1 2 3 4 5 6 7 8

Number of bids/requests

101

102

103

104

105

106
Simulated time (in ms)

MPC
P2-DPOP(−)

P-DPOP(−)

DPOP

Figure 3.15: Runtime performance on resource allocation problems.

1 2 3 4 5 6 7 8

Number of bids/requests

101

102

103

104

105

106
Number of messages

MPC
P2-DPOP(−)

P-DPOP(−)

DPOP

1 2 3 4 5 6 7 8

Number of bids/requests

103

104

105

106

107

108

109
Information exchanged (in bytes)

MPC
P2-DPOP(−)

P-DPOP(−)

DPOP

Figure 3.16: Communication performance on resource allocation problems.

problem sizes, P-DPOP and P2-DPOP performed the same as their respective “minus"
variants.

3.7.4 Equilibria in Graphical Games

The problem of computing equilibria in graphical games was already introduced
in Section 2.2.6, in which we have also briefly described two DisCSP formulations
proposed in previous work. We first go over the undesirable privacy properties of these
two formulations, and we propose a novel, third one that makes it possible to better
protect the privacy of the players in the game.

93

Chapter 3. Strong Privacy Guarantees in DCOP

DisCSP Formulations

The formulation in [Vickrey and Koller, 2002] (variables as single-player strategies) has
a remarkable disadvantage: players express their cost functions in Equation (2.5) as
constraints involving their neighbors’ variables. This implies that this information
is shared with all neighbors, and this formulation would reveal upfront to player i’s
neighbors her list of neighbors Ni, whether she likes or dislikes each one of them
(ln∈Ni), and her private cost ai.

While the formulation in [Soni et al., 2007] (variables as joint neighborhood strate-
gies) has the distinct complexity disadvantage of dramatically expanding the variable
domains (player i’s variable can then take on |S||Ni∪{i}| values instead of just |S|),
it partially addresses the privacy leaks in the previous formulation, because each
best-response constraint is now a unary constraint, initially known only to the cor-
responding player. However, the binary constraints between each pair of neighbors,
which are needed to enforce that the two players’ variables take on consistent values
(i.e. that the two players agree on their respective strategies and those of their common
neighbors), necessarily reveal each agent’s list of neighbors to each of her neighbors.

p4

p3

p2

p1

p0

p4s4p4s1

p1s4p1s1

p3s1 p3s3

p1s3

p2s0

p0s0

p2s2

p0s2

p1s0

p0s1

Figure 3.17: The constraint graph for the game in Figure 2.7.

94

3.7. Experimental Results

Instead, we propose the following privacy-friendly DisCSP formulation, which is based
on introducing copy variables. Each player i owns one variable pisnj for each neigh-
bor nj ’s strategy, and for her own, as shown in Figure 3.17. Notice that the resulting
constraint graph is not the same as the game graph, due to the presence of copy vari-
ables. The best-response constraints are the same as in [Vickrey and Koller, 2002],
except that player i expresses her constraint exclusively on variables that she owns.
Additionally, binary equality constraints enforce that each pair of neighbors agree on
each other’s strategy. This addresses the leak of topological information in [Soni et al.,
2007], because each variable corresponds to a single player’s strategy. However this
comes at the price of decision privacy: each player discovers her neighbors’ strategies
at the equilibrium. Therefore, we do not report the performance of P3/2-DPOP(−).

For MPC-DisCSP4, we used the DisCSP formulation from [Vickrey and Koller, 2002], i.e.
without copy variables. An interesting consequence of this difference is that, contrary
to P∗-DPOP(−), MPC-DisCSP4 is then able to hide each player’s chosen strategy from
her neighbors. In the context of the party game, this is not very useful to players who
decide to attend the party, since they will necessarily eventually discover whether
their acquaintances also decided to attend or not. On the other hand, a player who
declines the invitation does not directly discover anything about the list of attendees.
However, she might still be able to make indirect inferences about the decisions of her
acquaintances, based on the fact that her decision to decline is a best response to their
respective chosen strategies.

2 3 4 5 6 7

Number of players

101

102

103

104

105

106
Simulated time (in ms)

P2-DPOP(−)

MPC
P-DPOP(−)

DPOP

Figure 3.18: Runtime performance on party games.

95

Chapter 3. Strong Privacy Guarantees in DCOP

2 3 4 5 6 7

Number of players

101

102

103

104

105
Number of messages

P2-DPOP(−)

MPC
P-DPOP(−)

DPOP

2 3 4 5 6 7

Number of players

103

104

105

106

107

108
Information exchanged (in bytes)

P2-DPOP(−)

MPC
P-DPOP(−)

DPOP

Figure 3.19: Communication performance on party games.

Experimental Results

Figures 3.18 and 3.19 report the performances of the algorithms on random party
game instances based on acyclic game graphs of degree 2 (the graph is a tree in which
each node has at most 2 children), for pure Nash equilibria, with varying numbers of
players. The P2-DPOP(−) algorithms were only able to scale up to problems of size 5,
and were outperformed by MPC-DisCSP4 by at least one order of magnitude across
all three metrics. Both algorithms still performed largely worse than the P-DPOP(−)

algorithms, which seem capable of scaling to much larger problems. Like for most
previous problem domains, the performance overhead in P-DPOP(−) compared to
DPOP is minimal in terms of runtime, slightly larger in terms of information exchanged,
and goes up to one order of magnitude in terms of number of messages.

3.7.5 Vehicle Routing Problems

Finally, to evaluate the performance of our algorithms on DisWCSP benchmarks, we
carried out experiments on multi-agent VRPs (Section 2.2.5). DisSDMDVRP instances
were generated based on the Cordeau MDVRP benchmark instances from [Dorronsoro,
2007], by varying the visibility horizon H of the depots. To solve each depot’s local VRP,
the FRODO platform was coupled with the OR-Objects Library [OR-Objects, 2010]. The
VRP algorithm was set to the best out of Clarke and Wright’s savings algorithm [1964]
and Gillett and Miller’s sweep algorithm [1974] as construction algorithm, with the
2-Opt TSP improvement algorithm [Croes, 1958]. To compensate for the expensiveness
of the VRP constraint checks, the timeout was raised to 1 hour (wall clock time), and
the experiments were run on a faster, 2.53-GHz computer. Each entry in Table 3.2
is the median over 43 runs. nD is the number of depots that must coordinate their

96

3.7. Experimental Results

Ta
b

le
3.

2:
E

xp
er

im
en

ta
lr

es
u

lt
s

o
n

D
is

SD
M

D
V

R
P

b
en

ch
m

ar
ks

.

p
ro

b.
n
D

H
n
C

q m
a
x

P-
D

P
O

P
P

3
/2

-D
P

O
P

P
2
-D

P
O

P
M

P
C

-D
is

W
C

SP
4

ti
m

e
in

fo
ti

m
e

in
fo

ti
m

e
in

fo
ti

m
e

in
fo

p
01

4
13

2
/

27
25

39
5.

0
m

s
10

kB
58

2.
0

m
s

25
kB

26
.5

s
10

M
B

-
-

14
4

/
30

25
2.

1
s

27
kB

22
.2

s
77

9
kB

-
-

-
-

p
03

2
10

1
/

14
20

46
2.

0
m

s
5

kB
75

6.
0

m
s

12
kB

11
.8

s
2

M
B

25
.2

s
8

M
B

12
2

/
16

20
2.

1
s

21
kB

4.
4

s
98

kB
5.

0
m

in
39

M
B

6.
2

m
in

13
0

M
B

p
11

2
22

1
/

19
47

1.
2

s
9

kB
1.

9
s

20
kB

49
.8

s
10

M
B

2.
1

m
in

69
M

B
24

2
/

23
47

11
.3

s
80

kB
37

.2
s

33
4

kB
51

.6
m

in
37

2
M

B
-

-

p
12

2

65
2

/
72

1
32

4.
0

m
s

3
kB

69
0.

0
m

s
23

kB
1.

5
m

in
10

M
B

1.
5

m
in

41
4

M
B

70
4

/
72

2
87

9.
0

m
s

7
kB

5.
0

s
11

0
kB

31
.5

m
in

19
1

M
B

11
.1

m
in

2
G

B
79

8
/

80
2

6.
1

s
58

kB
5.

2
m

in
2

M
B

-
-

-
-

80
10

/
80

4
2.

1
m

in
1

M
B

-
-

-
-

-
-

p
15

4
60

8
/

14
4

1
94

3.
0

m
s

19
kB

13
.0

s
1

M
B

-
-

-
-

70
16

/
14

4
2

9.
3

m
in

17
M

B
-

-
-

-
-

-
p

18
6

60
14

/
21

5
1

2.
6

s
86

kB
2.

2
m

in
7

M
B

-
-

-
-

p
21

9
60

24
/

32
4

1
34

.4
s

2
M

B
-

-
-

-
-

-

97

Chapter 3. Strong Privacy Guarantees in DCOP

decisions, and nC is reported as number of customers that can be served by at least two
depots / total number of visible customers. To solve each problem instance, P2-DPOP
and MPC-DisWCSP4 need an upper bound cmax respectively on the optimal cost and
on the worst feasible cost; this bound was set to the sum of the worst costs of all VRPs.

Being a majority threshold scheme, MPC-DisWCSP4 could not provide any privacy
guarantee on the problem instances that involve only 2 agents. These problem in-
stances are indicated in italics in Table 3.2, and happen to be the only ones that
MPC-DisWCSP4 could solve before the timeout. On these instances, P2-DPOP had
comparable performance in terms of runtime, but exchanged up to 40 times less infor-
mation. Furthermore, where MPC-DisWCSP4’s threshold scheme failed to guarantee
any level of privacy, P2-DPOP had an almost perfect score (Table 3.1). P2-DPOP was
also able to solve more instances.

Table 3.2 also shows that replacing ElGamal encryption with obfuscation by addition
of random numbers, like in P-DPOP and P3/2-DPOP, cut the runtime by 1 to 2 orders of
magnitude, and the information exchange by 3 orders of magnitude, making it possible
to solve many more instances.

Finally, comparing P3/2-DPOP against P-DPOP shows that decision privacy can often be
achieved at low performance losses. It is only when the number of customers on which
depots need to coordinate (first number in column nC) gets larger, that P3/2-DPOP’s
performance starts to degrade significantly. This is consistent with the theoretical
performance analysis in Section 3.4.5. Notice however that, on problem instances
with only 2 depots (in italics), decision privacy actually cannot be guaranteed, since all
decisions are semi-private information that cannot be protected.

3.8 Summary

In this chapter, we have introduced the definitions of four types of information about
a DisCSP or a DCOP that agents solving the problem might want to keep secret. Agent
privacy is about protecting the presence and identities of the agents; topology privacy
deals with the presence of topological constructs in the constraint graph (nodes, edges,
cycles); constraint privacy has to do with the nature of the constraints; and decision
privacy involves only revealing to an agent the part of the solution that concerns its
variables. After reviewing the literature on privacy in DisCSP/DCOP, we have described
a new family of P-DPOP algorithms that attempt to provide strong guarantees on the
protection of all four types of information. We have shown that our algorithms both
score higher privacy-wise than the previous state of the art, and also tend to scale to
larger problems on most benchmark problem classes we have investigated.

98

4 StochDCOP: DCOP under Stochas-
tic Uncertainty

This chapter presents an extension of the traditional DCOP formalism that we call
StochDCOP, which includes sources of uncertainty in the form of random, uncontrol-
lable variables with known probability distributions. Section 4.1 first formally defines
this extension, and illustrates it on various applications. Section 4.3 then presents
some previously proposed extensions of DCOP to include uncertainty, and explains
how this previous work relates to ours. Sections 4.4 to 4.6 then introduce three new
algorithms1 to solve StochDCOPs. They are all based on DPOP, but the general tech-
niques we propose could easily be applied to other DCOP algorithm as well. Section 4.7
shows that, under certain conditions, some of our algorithms are actually equivalent,
in that they produce the same solutions. Section 4.8 then shows how our algorithms
can be adapted to use sampling when the uncertainty space is too large to be explored
exhaustively. Finally, Section 4.9 compares the performances of the three algorithms
on various StochDCOP classes.

4.1 DCOP under Stochastic Uncertainty

We first formally define our novel StochDCOP framework, as an extension of the
DCOP formalism that includes random variables in addition to the traditional decision
variables.

4.1.1 StochDCOP Formalism

The formal definition of a DCOP under Stochastic Uncertainty is an extension of the
definition of a DCOP (Definition 2), in which uncontrollable, random variables are
used to model the sources of uncertainty in the problem. Additionally, we introduce
the notion of an evaluation function to measure the quality of a solution.

1We have published these algorithms in the following workshop and conference papers: [Léauté and
Faltings, 2009a, 2011b].

99

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Definition 13 (StochDCOP). We define a Distributed Constraint Optimization Problem
under Stochastic Uncertainty as a tuple < A,X ,D,R,∆,P, C, e >, whereA, X andD
are defined as in Definition 2:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of decision variables, such that each variable xi is con-
trolled by a given agent a(xi);

• D = {D1, ..., Dn} is a set of finite variable domains, variable xi taking values inDi;

and furthermore:

• R = {r1, . . . , rq} is a set of random variables modeling future, uncontrollable
events;

• ∆ = {∆1, . . . ,∆q} is a set of (not necessarily finite) domains for the random
variables such that ri takes values in ∆i;

• P = {π1, . . . , πq} is a set of probability distributions for the random variables,
where each distribution πi : ∆i → R defines the probability law for random
variable ri, with

∫
r∈∆i

πi(r)dr = 1;

• C = {c1, . . . , cm} is a set of soft constraints over mixed subsets of decision and
random variables. Any constraint is assumed to involve at least one decision
variable (constraints over only random variables can be modeled as probability
distributions);

• e is an evaluation function that assigns cost values to assignments to the decision
variables in X , based on a cost function c : X ×R → R ∪ {+∞}:

ec : D1 × . . .×Dn → R ∪ {+∞} .

The restriction of e to a single random variable r will be denoted by er:

erc : D1 × . . .×Dn → (R ∪ {+∞})
⊗

ri 6=r ∆i .

A solution is an assignment of values to the decision variables only that is independent
of the random variables, and that minimizes the evaluation of the sum of all costs:

(x∗1, . . . x
∗
n) = arg min

x1...xn

{
e∑

i ci
(x1, . . . xn)

}
.

Random variables are not initially assigned to any specific agent and do not participate
in the solution; this is because random variables model uncontrollable uncertainty in
the agents’ common environment. StochDCOPs are still distributed in nature:

100

4.1. DCOP under Stochastic Uncertainty

1. The decision power is distributed like in DCOPs, but random variables are not
under the control of the agents: their values are drawn by Nature from their
respective probability distributions, independently of the decision variables, and
after the agents must have chosen values for their decision variables. Solving a
StochDCOP involves choosing values for the decision variables only, anticipating
Nature’s future decisions.

2. The knowledge of each random variable, its domain and its probability distribu-
tion is shared only among the agents in control of neighboring decision variables.

The evaluation function is used to summarize in one criterion the quality of the chosen
solution, which would normally depend on the values of the random variables. A typi-
cal evaluation function is the expectation, in which case the solution is the assignment
that minimizes the expected sum of all costs ER [

∑
i ci]. Other evaluation functions are

proposed in the next section.

Notice that following Definition 13, multiple agents’ costs can depend on a common
random variable, without the agents initially being aware of it. The algorithms we
propose differ about whether and how agents discover and reason about such co-
dependencies. Furthermore, the probability distributions for the random variables
are assumed independent of each other and of the decision variables, which amounts
to assuming independent sources of exogenous uncertainty. Two sources of uncer-
tainty with correlated probability distributions can be represented by a single random
variable in order to enforce independence.

4.1.2 Evaluation Functions

As presented in Definition 13, a solution to a StochDCOP is an assignment (x∗1, . . . , x
∗
n)

to all decision variables that is independent of the values of the random variables
R = {r1, . . . , rq}. As a result, the quality of a given solution does necessarily depend on
the random variables, and is equal to

∑
i ci(x

∗
1, . . . , x

∗
n, r1, . . . , rq). In order to evaluate

this solution quality using a single criterion, the StochDCOP defines an evaluation
function e, such that the optimal solution must minimize e∑

i ci
(x∗1, . . . , x

∗
n) ∈ R. This

section presents examples of such evaluation functions, and highlights some of their
properties.

Examples of Evaluation Functions

Consider a cost function c(x, r) that depends on a decision variable x and on a random
variable r. We propose several approaches to evaluating an assignment to x based on
c(x, r): the expectation approach, the robust approach, and the consensus approach.

101

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Expected Solution Quality The expectation approach uses the evaluation function
that consists in taking the expected value of c(x, r), based on r’s probability distribu-
tion πr:

ec : x→ Er [c(x, r)|x] =

∫
r∈∆r

πr(r)c(x, r)dr .

Using a sample list of valuesSr for r instead of its true (possibly continuous) domain ∆r,
the expectation can be approximated as follows:

Er [c(x, r)|x] ≈ 1

|Sr|
∑
r∈Sr

c(x, r) . (4.1)

The prefix Exp- will denote algorithms using this approach.

Consensus: Maximum Probability of Optimality Bent and van Hentenryck [2004]
introduced a new approach for centralized stochastic problems called consensus,
which differs from the traditional approach based on minimizing the expected cost.
They showed that when the number of samples used to approximate the probability
distributions of the random variables is limited, for instance by time constraints, it is
better to choose a solution that is the optimal one for the largest number of samples,
rather than one that minimizes the expected cost across samples. This amounts
to maximizing the probability of optimality, which we denote by P, rather than the
expected solution quality, and corresponds to choosing the evaluation function that
measures (minus) the probability that c(x, r) is minimized:

ec : x→ Pr[c(x, r)|x] = −
∫
r∈∆r

πr(r) · δx=arg minx′ c(x
′,r)(x, r)dr

where δX = 1 if X is true, 0 otherwise.

When the domain ∆r of r is approximated by a list Sr of sample values for r, this
evaluation function can be approximated as follows, modulo a constant multiplicative
factor:

Pr[c(x, r)|x] ≈ −
∣∣∣∣{r ∈ Sr | x = arg min

x′
c(x′, r)

}∣∣∣∣ . (4.2)

This approach will be referred to using the prefix Cons-.

Robust Decision-making: Worst-case Solution Quality In some problem domains,
agents might not want to take the risk of choosing a solution that can have a very high
cost with some non-zero probability, even if this solution gives minimum expected

102

4.1. DCOP under Stochastic Uncertainty

cost. In such cases, it can be more desirable to choose the solution that minimizes the
worst-case cost instead. This can be achieved by choosing the following evaluation
function:

ec : x→ sup
r∈∆r

{c(x, r)} .

When a sample list of values Sr is used instead of r’s full domain ∆r, the previous
formula can be replaced with the following:

ec(x) ≈ max
r∈Sr

{c(x, r)} .

The prefix Robust- will be used for algorithms based on this approach.

Properties of Evaluation Functions

We now define some properties that an evaluation function may or may not satisfy,
which will have important consequences on the properties of the StochDCOP algo-
rithms presented in this chapter.

Definition 14 (linearity). An evaluation function e is linear if and only if it satisfies the
following property:

∀c1, c2, ∀x ec1+c2(x) = ec1(x) + ec2(x) .

Of all the examples of evaluation functions given in the previous section, only the
expectation function is linear.

Definition 15 (commensurability). An evaluation function e is commensurable if and
only if its output is commensurable with the output of the cost function c; in other words,
if the evaluation ec(x) remains a cost.

The expectation and worst-case evaluation functions are both commensurable, because
Er [c(x, r)|x] and supr{c(x, r)} are still costs. On the contrary, the consensus evalua-
tion function is non-commensurable, because P[c(x, r)|x] is not a cost, but rather a
probability.

Definition 16 (support). A commensurable evaluation function e is said to be supported
if the following property holds:

∀c, ∀x, ∃rc(x) | ec(x) = c(x, rc(x)) (4.3)

and rc is then called the support of e with respect to c.

103

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Intuitively, whether an evaluation function e is supported is equivalent to whether there
exists such a function as arg e. For instance, if random variables have finite domains ∆,
then sup ≡ max, and the worst-case evaluation function is clearly supported, with
support rc(x) = arg maxr∈∆{c(x, r)}, since Eq. (4.3) then holds:

∀c, ∀x, c(x, rc(x)) = c(x, arg max
r∈∆
{c(x, r)}) = max

r∈∆
{c(x, r)} = ec(x) .

On the other hand, the expectation evaluation function is unsupported, because
Er [c(x, r)|x] might not correspond to the value of c(x, r) for any assignment to r.

4.2 Examples of Applications

This section illustrates the StochDCOP formalism on a set of application domains, most
of which are stochastic adaptations of DCOP application domains from Section 2.2.

4.2.1 Stochastic Graph Coloring

Consider a stochastic variant of the Max-DisCSP graph coloring problem class intro-
duced in Section 2.2.1, in which some nodes’ colors are uncontrollable. Figure 4.1

x1

x2

x3

x4r1 r2

Figure 4.1: Sample stochastic graph coloring problem.

Table 4.1: Optimal colorings for the problem in Figure 4.1.

expectation and consensus robustness

Y

Y

Y

B? ?

R

B

G

Y? ?

E [c] 0.7 1.7
max c 5 2
P[c] 63% 2%

104

4.2. Examples of Applications

shows a sample problem instance involving four agents x1 . . . x4 that can take four
colors {red, green, blue, yellow}, and two uncontrollable nodes r1 and r2, with the same
color probability distribution {R : 0.4, G : 0.3, B : 0.2, Y : 0.1}. Table 4.1 illustrates the
optimal solutions to this problem, depending on whether we choose the expectation
and consensus evaluation function (left) or the robust evaluation function (right).

4.2.2 Sensor Networks with Moving Targets

Section 2.2.3 introduced a class of sensor network problems, in which omni-directional
sensors have to decide whether to be on or off in order to observe a set of targets at
known locations. We now describe a stochastic variant of this problem class, in which
only the initial positions of the targets are known, but their respective positions at the
next time step are only known with some probabilities. The goal is now for the sensors
to commit to being on or off, so as to maximize the reward of observing the targets in
their initial positions and their next, uncertain positions (the sensors cannot change
their own states in between, and only plan one step ahead). The utility obtained by
tracking targets therefore becomes a sum of three terms, the first two being the same
as in Section 2.2.3:

• Each sensor gets a negative utility of−1 when it is on;

• For each target, if 3 or more sensors close to its initial, known position are on, the
sensors share a utility of 12. If only 2 sensors are observing the target in its initial
position, this utility drops to 6, and down to 1 if only one sensor observes it.

• For each target, for each next uncertain position P it can move to, if 3 or more
sensors close to P are on, and the target actually moves to P , the sensors share
a utility of 12. The utility drops down to 6 for only 2 sensors, and 1 for only one
sensor.

1200 130

300

430600730

900

1030

Figure 4.2: Allowed target moves.

The StochDCOP formulation for this stochastic problem is the same as for the deter-
ministic problem introduced in Section 2.2.3, with two additional components:

105

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

• For each target k, the StochDCOP contains one random variable tk that takes
values in the domain ∆tk = {130, 300, 430, 600, 730, 900, 1030, 1200}, and repre-
sents the next, uncertain position of the target, as illustrated in Figure 4.2. The
value 900 corresponds to moving towards 9 o’clock, i.e. moving horizontally to
the left.

• For each target k, and each possible next position P ∈ ∆tk for the target, the
following 5-ary, soft constraint expresses the utility obtained by the four sensors
around P if they eventually are able to observe the target:

uP
k : (xjP

iP
, xjP+1

iP
, xjP

iP+1, x
jP+1
iP+1 , tk) →

{
uk(x

jP
iP

, xjP+1
iP

, xjP
iP+1, x

jP+1
iP+1) if tk = P

0 if tk 6= P
(4.4)

where uk is defined in Eq. (2.2). This constraint is illustrated in Figure 4.3, for
the direction of motion P = 900. The constraints for the other directions of
motion are defined similarly, all involving the same random variable tk. The
4-ary constraint uk is defined as in Figure 2.4, and encodes the utility obtained by
tracking the target in its known, initial position.

uik−1,jk

xjkik−1

uik−1,jk+1

xjk+1
ik−1

uik,jk

xjkik

uik,jk+1

xjk+1
ik

uik+1,jk

xjkik+1

uik+1,jk+1

xjk+1
ik+1

uku900
k tk

Figure 4.3: Partial constraint graph for target k.

This models decomposes the reward for tracking the target in its next, uncertain
position into eight 5-ary constraints, which is much more tractable than using a single
17-ary constraint. However, as a consequence, no sensor initially has a global view of
the impact of the target’s move on the overall utility. We believe this short-sightedness
is an important feature of many real-life, distributed problems. This thesis is precisely
about algorithms that differ on whether and how agents acquire a global view of the
impact of various sources of uncertainty on the overall utility. For instance, in the
sensor network problem with moving targets, the sensors need to exchange a certain
amount of information about uncertainty in order to discover that the target actually

106

4.2. Examples of Applications

cannot escape: regardless of its next, uncertain move, it will always be in sight of four
sensors.

Figure 4.4(a) illustrates the optimal solution found using the expectation evaluation
function for the single-target problem instance in Figure 4.2, when all target moves
are assumed equiprobable (on sensors are in black). This is the configuration that
maximizes the expected solution quality. Notice that, while the problem in Figure 4.2
has multiple symmetries, optimal solutions (according to some evaluation function)
do not necessarily exhibit the same symmetries.

(a) maximum ex-
pected utility

(b) optimal robust
1-configuration

(c) optimal robust
2-configuration

(d) optimal robust
3-configuration

Figure 4.4: Some remarkable on/off sensor configurations.

When using the robust evaluation function, the following definition singles out some
remarkable robust solutions to the sensor network problem, which will be used in a
later section to compare various algorithms. Such robust sensor configurations are
illustrated in Figure 4.4.

Definition 17 (robust n-configuration). We call a robust n-configuration a solution to
the sensor network problem with moving targets in which any given target will always
remain in sight of at least n on sensors, regardless of the direction in which it moves.
Such a configuration is called optimal if it also minimizes the number of on sensors.

4.2.3 Stochastic Vehicle Routing

We now introduce a stochastic variant of the multi-agent VRP class described in Sec-
tion 2.2.5.

Definition 18 (StochDisSDMDVRP). The Stochastic, Distributed, Shared-Deliveries,
Multiple-Depot VRP is defined as a tuple < D,nV , Qmax, Lmax, H,C,R,Q >, where D,
nv, Qmax, H and Q are defined as in Definition 5:

• D = {d1, . . . , dnD} is a set of depots in the Euclidian plane, each controlled by a
different delivery company;

• nV is the number of vehicles at each depot;

107

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

• Qmax and Lmax are respectively the maximum load and maximum route length of
any vehicle;

• H ≤ Lmax/2 is the visibility horizon of each company, which defines the bound-
aries of its knowledge of the overall problem. Depot di is only aware of and can
only serve the customers that are within distance H ;

• Q = {q1, . . . , qnC} ∈ NnC are the customer demands, which can be split among
multiple companies.

and furthermore:

• C = {c1, . . . , cnC} is a set of customers;

• R = {r1, . . . , rnC} are the uncertain locations for the customers, with known
probability distributions;

The goal is for the companies to agree on who should serve which customers, using
which vehicle routes, so as to fully serve all visible customers, at minimal evaluated total
route length.

The StochDCOP formulation for this problem class is the same as in Section 2.2.5,
except that it now also includes one random variable rj for each customer cj that
corresponds to her uncertain location, and each depot’s VRP constraint is now also

d1
hh
h

c1

?
?
?

hh
h

c2

?
?
?

d2

d3

Figure 4.5: A StochDisSDMDVRP instance.

r1

x1
1��
��

��
��vrp1

d1

r2

x2
3��
��

��
��vrp3

d3��
��
��
��

x1
2 x2

2

vrp2

d2

sum1 sum2

Figure 4.6: The StochDCOP constraint graph for Figure 4.5.

108

4.2. Examples of Applications

expressed over the random variables associated with the customers it can serve. This
is illustrated in Figures 4.5 and 4.6, on an instance involving two customers c1 and c2

with each three possible uncertain locations, and three depots such that depot d1 can
only serve c1, d2 can serve both customers, and d3 only c2.

4.2.4 The Distributed Kidney Exchange Problem

The Kidney Exchange Problem introduced by Saidman et al. [2006] is the problem
of matching potential kidney donors to patients, and is an example of a broader
class of problems that involves looking for cycles in a directed graph. As a new class
of benchmarks for DCOP and StochDCOP, we propose a distributed version of this
problem, which can be defined as follows.

Definition 19 (DKEP). The Distributed Kidney Exchange Problem can be defined as a
directed graph, in which each node is an agent acting on behalf of a pair of people formed
by a patient awaiting a kidney transplant, and a friend or relative of the patient, who is
willing to donate one kidney to save her friend, but who is unfortunately biologically
incompatible. The directed edges in the graph indicate which donor (at the tail of the
edge) can give a kidney to which patient (at the head).

An optimal solution to the problem is a selection of non-intersecting directed cycles
in the graph that has maximum total length, i.e. an assignment of donors to patients
that maximizes the number of saved patients, while only allowing cycles of length 2
or 3. Larger cycles would involve at least 8 people (4 pairs) and are not logistically
implementable, because all transplantations in a cycle must be executed simultaneously
to make sure no donor changes her mind once her friend or relative has received a kidney.

In order to use this new problem class as a benchmark for our StochDCOP algorithms,
we also propose the following stochastic version of the problem.

Definition 20 (StochDKEP). A Stochastic Distributed Kidney Exchange Problem is
a DKEP in which each node in the directed graph is labeled with the vital progno-
sis for the corresponding patient, i.e. her probability to survive until a hypothetical
transplantation.

A StochDKEP can be represented as a StochDCOP in which each agent i (i.e. each
patient-donor pair) owns two decision variables fi and ti whose values are the IDs
of the agent j that it gets a kidney from, respectively the agent k it gives a kidney
to in return. These two variables can also take the value 0, which indicates that the
agent does not take part in any transplantation. We also introduce one binary random
variable si per agent i, such that si = 1 if and only if the patient survives until the
transplantation. The constraints are then of the following 4 types:

109

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

I give ⇐⇒ I receive: Each agent i expresses the following internal, binary, hard con-
straint over its two decision variables fi and ti:

fi = 0 ⇐⇒ ti = 0

which is satisfied if and only if the variables are either both zero (the agent does
not give nor receives a kidney) or both non-zero (the agent gives a kidney and
receives one in return).

I give to you ⇐⇒ you get from me: For each edge i→ j, i.e. for each pair of agents
(i, j) such that i can give a kidney to j, the following binary, hard constraint
enforces the consistency of the two agents’ decision variables:

fi = j ⇐⇒ tj = i .

2-cycles: For each agent i, and for each other cross-compatible agent j (i.e. we have
the bidirectional edge i↔ j), the following 4-ary, soft constraint expresses the
fact that agent i gets a utility of 10 if the two agents take part in a 2-cycle and both
patients survive until the exchange; otherwise it gets a utility of 0:

u2 : (fi, ti, si, sj)→
{

10 if fi = ti = j ∧ si = sj = 1

0 else
.

3-cycles: For each agent i, if there exists a 3-cycle i→ j → k → i in the graph, then
agent i gets a utility of 9 if the 3-cycle is implemented, and all three patients
survive until the exchange or one of the two other patients dies, but the two
remaining agents can fall back to a 2-cycle; the utility is 0 otherwise.

u3 : (fi, ti, tj , si, sj , sk) →

9 if

(
fi = k ∧ ti = j

∧ tj = k ∧ si = 1

)
∧

 sj = sk = 1

∨ (sj = 1 6= sk ∧ ∃ i ↔ j)

∨ (sk = 1 6= sj ∧ ∃ i ↔ k)

0 else

The per-agent utility of a 3-cycle is set lower than the per-agent utility for a 2-cycle
(9 < 10) to express the fact that 3-way exchanges are more complex to implement
and therefore less desirable than 2-way exchanges.

4.3 Related Work

This section presents some previously proposed extensions of the DCOP framework
to include uncertainty. Section 4.3.1 first briefly describes the DCEE framework, in
which the utility values of some constraints may be unknown, and the corresponding
decisions need to be tentatively made for these utilities to be observable. Section 4.3.2
then explains a DCOP extension in which uncertainty is modeled by utility distributions

110

4.3. Related Work

rather than through the introduction of random variables. Section 4.3.3 recalls the
Quantified DCOP framework, which introduces universally quantified variables, while
normal decision variables are existentially quantified.

4.3.1 Distributed Coordination of Exploration and Exploitation

Jain et al. [2009] have proposed to extend the traditional DCOP formalism, by replacing
the assumption that each constraint is fully known to all agents involved, by the much
weaker assumption that each constraint’s scope is known to all agents involved, but
none of the values of the constraint (i.e. the costs) is initially known to any agent. The
actual cost of a given assignment to decision variables can only be observed after the
corresponding decisions have been collectively made and implemented. Given a fixed
maximum number of decision rounds, the problem then becomes one of balancing
exploration and exploitation [Taylor et al., 2010], which is why they call their framework
Distributed Coordination of Exploration and Exploitation (DCEE).

While this framework can be useful to model various real-world problems, it does
not incorporate any model of uncertainty. In contrast, one of the most prominent
features of the StochDCOP formalism is that it is able to model problems in which
some probabilistic knowledge of uncertainty is available, and in which such knowledge
should be exploited to produce better solutions.

4.3.2 DCOP with Utility Distributions

Atlas and Decker [2010] have proposed another extension of the traditional DCOP for-
malism, by adding a notion of stochastic uncertainty. Their framework (later revisited
by Stranders et al. [2011]) can be formally defined as follows, rephrased in terms of
cost minimization.

Definition 21. A Distributed Constraint Optimization Problem with Cost Distributions
is defined as a tuple < A,X ,D, C, E >, whereA, X , andD are defined as in Definition 2:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of decision variables, such that each variable xi is con-
trolled by a given agent a(xi);

• D = {D1, ..., Dn} is a set of finite variable domains, variable xi taking values inDi;

and furthermore:

• C = {c1, . . . , cm} is a set of soft, probabilistic constraints, where each constraint is
a s(ci)-ary function ci : Di1 × . . .×Dis(ci)

→ (R× [0, 1])N that assigns, to each com-

111

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

bination of assignments to a subset {xi1 , . . . , xis(ci)} of decision variables, a discrete
cost distribution that can be represented by a finite set of (value, probability) pairs:

ci(xi1 , . . . , xis(ci)) =
{(
cki (xi1 , . . . , xis(ci)), π

k
i (xi1 , . . . , xis(ci))

)}
k∈

[
0,δi(xi1 ,...,xis(ci)

)
]

such that
∑

k∈
[
0,δi(xi1 ,...,xis(ci)

)
] πki (xi1 , . . . , xis(ci)) = 1;

• E = {e1, . . . , en} is a set of evaluation functions, one per decision variable, where
each evaluation function ei : R∆ → R reduces a cost distribution to a single cost
value.

Intuitively, this framework extends the DCOP framework by having constraints return
cost distributions instead of just single cost values. The resulting framework can be
simultaneously seen as a generalization, and a particular case of our StochDCOP frame-
work. First, it is a generalization, because each decision variable is allowed to have its
own evaluation function, which is not necessarily the same for all decision variables.
Furthermore, it allows endogenous uncertainty, i.e. probability distributions that may
depend on the decision variables, while a StochDCOP as defined in Definition 13 only
allows exogenous uncertainty. If one wanted to reformulate a DCOP with Cost Distri-
butions into a StochDCOP, one would have to express each probabilistic constraint ci
as a StochDCOP constraint c̃i(xi1 , . . . , xis(ci) , ri) = crii (xi1 , . . . , xis(ci)), whose scope in-

cludes an additional random variable ri of domain ∆i =
[
0, δi(xi1 , . . . , xis(ci))

]
, and of

probability distribution πi(xi1 , . . . , xis(ci) , ri) = πrii (xi1 , . . . , xis(ci)), which depends on
the decision variables xi1 , . . . , xis(ci) . The StochDCOP formalism could be extended to
support these two features, if the application domain requires it.

On the other hand, this is a special case of StochDCOP, because no two constraints can
depend on the same source of uncertainty. Each cost distribution of each constraint is
based on its own probability distribution, which is independent of all other probability
distributions. This is an important limitation of this formalism, because it cannot be
used to model problems in which multiple agents’ costs depend on common sources
of uncertainty. For example, in Figure 4.1, it would not be possible to express the fact
that the respective cost distributions of nodes x1 and x2 are correlated by the fact that
they both need to have a color different from that of the uncontrollable node r1.

4.3.3 Quantified DCOP with Virtual Adversaries

This section presents previous work on Quantified DCOPs, which are another extension
to the traditional DCOP framework that bares similarities with our StochDCOP exten-
sion. Some of the approaches proposed to solve Quantified DCOPs can be adapted to
solve StochDCOPs, as we show in Section 4.4.

112

4.3. Related Work

Definition of Quantified DCOP (QDCOP)

The QDCOP formalism was proposed by Matsui et al. [2010]; we present below a formal
definition that is a slight reformulation from their original definition, so as to highlight
the similarities with our definition of a StochDCOP (Definition 13).

Definition 22 (QDCOP). A QDCOP can be defined as a tuple < A,X ,D,R,∆, C,Q >,
such asA, X ,D,R,∆, and C are defined as in Definition 13:

• A = {a1, ..., ak} is a set of agents;

• X = {x1, ..., xn} is a set of decision variables, such that each variable xi is con-
trolled by a given agent a(xi);

• D = {D1, ..., Dn} is a set of finite variable domains, variable xi taking values inDi;

• R = {r1, . . . , rq} is a set of random variables modeling future, uncontrollable
events;

• ∆ = {∆1, . . . ,∆q} is a set of (not necessarily finite) domains for the random
variables such that ri takes values in ∆i;

• C = {c1, . . . , cm} is a set of soft constraints over mixed subsets of decision and
random variables. Any constraint is assumed to involve at least one decision
variable (constraints over only random variables can be modeled as probability
distributions);

and furthermore:

• Q is a partial order on the variables in X ∪R defined as follows:

X0 �Q R0 �Q . . . �Q Xi �Q Ri �Q . . . �Q Xp �Q Rp

where (Xi)0≤i≤p and (Ri)0≤i≤p are partitions respectively of X and R of same
cardinality, andRp is allowed to be empty.

Matsui et al. omitted to specify how the knowledge of Q is distributed among
agents; we assume each agent knows the relative orders of all variables it has
constraints with.

A solution (x∗1, . . . , x
∗
n) is an assignment to each decision variable xj ∈ X that is a

function of the decision variables and random variables preceding xj inQ:

x∗j :

 ⊗
xk�Qxj

Dk

×
 ⊗
rk�Qxj

∆k

→ Dj

113

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

such that the sum of all constraints is equal to:

∑
i

ci(x
∗
1, . . . , x

∗
n) = min

X0

{
max
R0

{
. . .min

X0

{
max
R0

∑
i

ci

}}}
.

A QDCOP can be seen as a multi-stage StochDCOP in which the evaluation function is
the worst-case function. This makes it natural and promising to attempt to modify ex-
isting QDCOP algorithms in order to solve StochDCOPs, when the evaluation function
can be different; we show how to do this in Section 4.4.

Virtual Adversarial Agents

Matsui et al. proposed several modified versions of ADOPT [Modi et al., 2005] to
solve QDCOPs. They are based on the intuition that random variables can be seen as
virtual adversaries, whose goal is to maximize the overall cost, instead of minimizing
it as the normal agents do. Intuitively, they showed that QDCOP algorithms can be
obtained from existing DCOP algorithms simply by assigning random variables to
virtual agents that perform the “opposite" DCOP algorithm. While this approach is
simple and elegant, it suffers from a number of drawbacks and limitations.

First, virtual adversarial agents must be simulated by the real, physical agents, which
has important privacy implications: to simulate a random variable r ∈ R, an agent a
needs to know all the constraints involving r, including the constraints that do not
involve any variable owned by a. This violates the traditional assumption that a con-
straint is only known to the agents involved in it, and is a breach of constraint privacy.

The second drawback is that the pseudo-tree used in the algorithm must be consistent
with the partial order Q. This restriction on the allowed pseudo-trees has implica-
tions both on performance and privacy. In terms of performance, restricting the
allowed pseudo-trees can only degrade the performance of the algorithm; for instance,
ADOPT’s performance is exponential in the depth of the pseudo-tree, and DPOP’s is
exponential in the width of the pseudo-tree.

In terms of agent privacy, it is desirable that two agents that do not share any constraint
do not need to know each other’s identities (or even existence), and in particular, do
not need to communicate directly. This means that, since two parent-child variables in
the chosen pseudo-tree need to exchange messages, they should always be owned by
agents that share constraints. This can be incompatible with respecting the order inQ.
For instance, there does not exist any consistent pseudo-tree for the constraint graph in
Figure 4.1 that does not violate the requirement that all parent-child relationships are
between neighboring variables. This is due to the fact that the consistency constraint
imposes that all three variables x1, x2 and x3 should be in the same branch of the

114

4.4. Complete, Centralized Reasoning: Comp-E[DPOP]

pseudo-tree, because they are all constrained to the random variable r1.

To construct a consistent pseudo-tree, Matsui et al. therefore proposed to add null
links between parents and children, following a distributed algorithm first proposed
by Silaghi and Yokoo [2007], which proceeds as follows. The algorithm initially makes
three assumptions. The first, explicit assumption is that the agents know a total or-
dering of the variables that is consistent with the partial orderQ. Such a total order
can be obtained for instance by breaking ties in the partial order using lexicographic
order of variable names. The second, implicit assumption is that any agent can com-
municate directly with any other agent; this is necessary because null links may be
added between any pair of variables. The third, also implicit assumption is that each
virtual agent has already been assigned to a physical agent that simulates it, so that
virtual agents can participate in the construction of the consistent pseudo-tree. These
two last assumptions have important consequences on privacy, as already discussed.
The algorithm then proceeds in a bottom-up fashion, with each variable incrementally
computing the list of its ancestors in the consistent pseudo-tree, and broadcasting this
list to its ancestors.

4.4 Complete, Centralized Reasoning: Comp-E[DPOP]

This section proposes an adaptation to StochDCOP of the general approach based on
virtual adversarial agents, previously applied by Matsui et al. [2010] to ADOPT to solve
QDCOPs (Section 4.3.3). Sections 4.4.2 and 4.4.3 also propose new distributed algo-
rithms to produce respectively pseudo-trees and consistent pseudo-trees. Section 4.4.4
then discusses the properties of the resulting StochDCOP algorithm, which we call
Comp-E[DPOP], because the use of consistent pseudo-trees guarantees completeness.

4.4.1 General Approach Based on Virtual Agents

In Comp-E[DPOP], random variables are assigned to virtual agents that behave exactly
like the real agents, except that they project random variables using the StochDPOP’s
evaluation function, instead of using the min like for the projection of decision vari-
ables. In the special case of QDCOPs, the evaluation function is the max, and therefore
the virtual agents are qualified as adversarial because their objective is to maximize
the total cost, while the real agents want to minimize it.

We generalize this approach to all commensurable evaluation functions (Definition 15).
For instance, if the evaluation function is the expectation, then the virtual agent for
random variable r will project it out of a cost c(r, ·) by reporting Er [c(r, ·)|·]. Notice
that the evaluation function e may or may not be supported (Definition 16), which
means that, contrary to decision variables, projecting a random variable may or may

115

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

not correspond to choosing a specific value for the variable in the support of e. For
instance, the (supported) worst-case evaluation function has virtual agents choose
counter-optimal values for their random variables, and report the corresponding
maximal cost. On the other hand, if a virtual agent uses the (unsupported) expectation
evaluation function, then it reports the expected cost, which is not necessarily achieved
for any allowed value of its random variable.

Like in [Matsui et al., 2010], Comp-E[DPOP] uses a consistent pseudo-tree ordering of
the variables. In the StochDCOP context, this means that a random variable r must
be lower in the pseudo-tree than any decision variable it is constrained with; in other
words, it must be a descendent of all its neighboring decision variables. An important
consequence of this is that the random variable r and all its neighboring decision
variables must all belong to the same branch of the pseudo-tree, since cross-edges
between different branches of the pseudo-tree are by definition not allowed.

Generating such a consistent pseudo-tree is not a trivial task, especially since Figure 4.1
showed an example of a constraint graph for which no such consistent pseudo-tree
exists without violating the assumption that all parent-child relationships must be
between neighboring variables. The following section proposes a new, distributed
protocol to generate a consistent pseudo-tree for StochDCOPs. An example of such a
consistent pseudo-tree for Figure 4.1 is illustrated in Figure 4.7, along with the UTIL
messages exchanged by Rob-Comp-E[DPOP] (represented in intensional form rather
than in table form for conciseness). Notice that r2 is the parent of x2, even though they
are not neighbors.

r1

x2

r2

x3

x4

x1

UTILr1→x2(x1, x2, x3)

=

3 if x1 = x2 = x3

1 if x1 6= x2 6= x3 6= x1

2 else

UTILx2→r2(x1, x3, x4)

=

{
2 if x1 = x3

1 else

UTILr2→x3(x1, x3, x4)

=

5 if x1 = x3 = x4

4 if x1 = x3 6= x4

2 if x1 6= x3 6= x4 6= x1

3 else

UTILx3→r4(x1, x4)

=

{
3 if x1 = x4

2 else

UTILx4→x1(x1) = 2

Figure 4.7: A consistent pseudo-tree for the constraint graph in Figure 4.1.

116

4.4. Complete, Centralized Reasoning: Comp-E[DPOP]

4.4.2 Distributed Pseudo-tree Generation

Previous work on pseudo-tree-based algorithms (Section 2.4.2) decomposed the pseudo-
tree generation phase into two sub-phases: 1) distributed election of the root of the
pseudo-tree, and 2) distributed depth-first traversal of the constraint graph. This
approach has two disadvantages:

1. To guarantee correctness and termination, the distributed root election proce-
dure (Algorithm 5) requires that all agents know an upper bound on the diameter
of the constraint graph, which is not necessarily the case in reality. Furthermore,
loose upper bounds hinder performance, as the number of messages exchanged
increases linearly with the bound.

2. The distributed depth-first traversal of the constraint graph cannot start before
the root variable has been chosen, which is inefficient.

Parallel Constraint Graph Traversal

We here propose a new distributed algorithm for pseudo-tree generation (Algorithm 24),
which does not require any knowledge about the diameter of the constraint graph, and
which performs both root election and depth-first traversal in parallel. The algorithm is
generally applicable to all DisCSPs or DCOPs2 (not just to StochDCOPs), and proceeds
as follows. First, each variable x is assigned a score sx (line 2) based on a specified
heuristic, such as the traditional most connected heuristic. Section 4.6.4 studies the
impact of the use of other scoring heuristics.

Each variable x then initiates its own distributed, depth-first traversal of the constraint
graph, with itself as the candidate root. All messages belonging to its traversal are
indexed by the score sx so as not to be mistaken for messages belonging to other traver-
sals initiated by other variables. For each traversal with candidate score s, variable x
stores asmarks[s][y] the status of each neighbor y, which can be either a parent, a child,
a pseudo-parent, a pseudo-child, or open if variable y remains to be traversed (line 4).
Variable x initiates its traversal by heuristically choosing a neighbor y0 as its first child
(line 5) and sending it a message (CHILD, sx) (line 6).

When variable x receives a message from a neighbor yi (line 8), it only reacts if the
message’s score s is equal to or greater than its own score sx (line 9). Otherwise, the
message is discarded, such that each traversal is interrupted as soon as a variable
discovers that the traversal’s candidate root does not have the maximum score. If it
is the first message with score s received by variable x, the sender yi is identified as

2In particular, this pseudo-tree generation algorithm could, in theory, also be adapted for use in
P∗-DPOP; however, the potential new privacy leaks resulting from running multiple traversals in parallel
would have to be investigated.

117

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Algorithm 24 Pseudo-tree generation algorithm for variable x
1: if x has at least one neighbor then
2: Choose a heuristic score sx for x
3: if ∀ neighbors y of x, sx > sy then
4: marks[sx][y]← open for all neighbors y of x
5: marks[sx][y0]← child for a heuristically chosen neighbor y0 of x
6: Send the message (CHILD, sx) to y0

7: loop
8: Wait for an incoming message (type, s) from a neighbor yi
9: if s ≥ sx then

10: if marks[s] = null then
11: marks[s][y]← open for all neighbors y of x
12: marks[s][yi]← parent
13: else if type = CHILD and marks[s][yi] = open then
14: marks[s][yi]← pseudo-child
15: Send message (PSEUDO, s) to yi
16: next
17: else if type = PSEUDO then
18: marks[s][yi]← pseudo-parent
19: else if type = ROOT then
20: sroot ← s
21: break
22: Heuristically choose yj such that marks[s][yj] = open
23: if there exists such a yj then
24: marks[s][yj]← child
25: Send the message (CHILD, s) to yj
26: else
27: Look up yj such that marks[s][yj] = parent
28: if there exists such a yj then
29: Send message (CHILD, s) to yj
30: else
31: sroot ← s
32: break
33: Record marks[sroot] as the chosen pseudo-tree
34: Send message (ROOT, sroot) to all children of x in the chosen pseudo-tree

the parent of x in this traversal (lines 10 to 12). Else, if the message is a CHILD token
received from an open neighbor, then the sender yi is identified as a pseudo-child,
which variable x reveals to yi by responding with a PSEUDO token (lines 13 to 18). The
CHILD token is then recursively passed from open neighbor to open neighbor, until
none remains (lines 22 to 26).

When variable x has no more open neighbors, it initiates a traversal backtrack by
returning the CHILD token to its parent (lines 27 to 29). If the variable has no parent, it
identifies itself as the chosen root (lines 31 to 33); this can only happen for the single

118

4.4. Complete, Centralized Reasoning: Comp-E[DPOP]

variable with highest score, as all other traversals have necessarily been prematurely in-
terrupted (line 9). The chosen root then notifies all variables of its score by propagating
down a ROOT token (lines 34 and 19 to 21).

Complexity Analysis

The worst-case complexity of the pseudo-tree generation phase, in terms of number
of messages, can be analyzed as follows. Let us assume for simplification that the
variables are indexed by increasing scores: sx1 < . . . < sxn ; this assumption can be
made without loss of generality. Each variable xi initiates a traversal of the constraint
graph rooted at xi, which is interrupted as soon as the first variable xj>i is visited; in
the worst case, this happens after all variables xj≤i have already been visited. This
represents the exchange of at most 2 messages per edge in the subgraph containing
only the xj≤i (1 CHILD down and 1 CHILD up for tree edges, 1 CHILD up and 1 PSEUDO
down for back-edges), summing up to at most 2d·i2 = d·imessages, where d is the degree
of the constraint graph. Summing up across all variables xi and adding the n ROOT
messages yields a worst number of messages of n+

∑
i=1...n d · i = n+d ·nn+1

2 ∈ O(dn2).
All messages have constant size, containing only a score and a destination variable.

4.4.3 Generating a Consistent Pseudo-tree

We now describe a simple method to generate consistent pseudo-trees, in a distributed
fashion. First recall that the consistency criterion imposes that any given random vari-
able must be in the same pseudo-tree branch as all its neighboring decision variables,
and that it must be lower than these decision variables in the branch. To achieve this,
we add null links in a manner similar to Matsui et al. [2010], except that our algorithm
does not make any of the restrictive assumptions made by Matsui et al.: it does not
assume that the agents know a total ordering of the variables, nor does it assume
any-to-any communication between the agents, nor that virtual agents first need to be
assigned to physical agents.

We do however make the necessary assumption that, for any given random variable r,
all agents ai owning a decision variable constrained with r must know each other, know
that they each control such a decision variable, and must be able to communicate with
each other. This assumption is necessary to implement the virtual agents approach,
because once a consistent pseudo-tree has been created, the agents ai will have to
agree among themselves as to who should simulate the virtual agent for r, and they
will then have to send to the chosen agent ar all their constraints involving r, so that
ar can simulate the virtual agent.3 Let us now introduce a new definition with respect

3In practice, it is sufficient to have at least one agent for each random variable r that knows all other
agents concerned with r.

119

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

to a graphical representation of a StochDCOP.

Definition 23 (Decisional constraint graph). The decisional constraint graph of a given
StochDCOP is obtained from the primal constraint graph, in which variables are nodes
and edges correspond to sharing a constraint, by removing all nodes corresponding to
random variables, as well as all edges linked to these nodes. The resulting graph contains
only nodes corresponding to decision variables.

Notice that if two decision variables in the StochDCOP share only a single n-ary con-
straint that also involves a random variable, then the two decision variables remain
neighbors in the decisional constraint graph, because only the edges involving random
variables are removed, not the full constraints.

The protocol then proceeds in three steps:

1. Modification of the constraint graph: The protocol starts with the decisional
constraint graph, excluding the random variables. This is necessary because
virtual agents have not yet been assigned to real agents, and therefore they
cannot be simulated in order to participate in the next step. Agents then create
null links between any pair of decision variables that share constraints with a
common random variable in the StochDCOP, unless they are already neighbors
in the decisional constraint graph. More formally: for each random variable r, for
each pair of decision variables (xi, xj) that are neighbors of r but not neighbors
of each other, add a trivial binary constraint between xi and xj that assigns the
cost 0 to all combinations of assignments to the two variables. This ensures that
all decision variables constrained with r will belong to the same branch, and
does not change the set of solutions to the problem.

2. Depth-first traversal: Run a depth-first traversal algorithm on the modified
decisional constraint graph, such as the one in Algorithm 24. This results in a
pseudo-tree involving only decision variables.

3. Assignment of virtual agents: For each random variable r, the neighboring de-
cision variable xr that is the lowest in the pseudo-tree is chosen to simulate the
virtual agent for r. All other agents send to xr their constraints involving r. The
random variable r is added to the pseudo-tree as a child of xr, and all constraints
involving r are added to the pseudo-tree as well. The result is guaranteed to
remain a valid pseudo-tree, as all decision variables constrained with r are an-
cestors of xr, and it is also guaranteed to be a consistent pseudo-tree, since r is
below all its neighboring decision variables.

Optionally, all null links can now be removed from the pseudo-tree, except if
removing a null link would disconnect a child from its parent.

120

4.4. Complete, Centralized Reasoning: Comp-E[DPOP]

Finally, notice that this algorithm has better privacy properties than the one proposed
by Matsui et al. [2010], because it only creates null links between decision variables that
are linked to a common random variable, instead of between possibly totally unrelated
variables. A parallel with earlier work by Matsui et al. [2008] can also be made (see
Section 4.6.3).

4.4.4 Algorithm Properties

This section analyzes some of the properties of Comp-E[DPOP], in terms of complexity,
completeness, and privacy.

Complexity

In terms of number of messages and amount of information exchanged, let us first
consider the added complexity of generating a consistent pseudo-tree, as opposed to
just any pseudo-tree like in DPOP (Section 2.4.4). The modification of the constraint
graph (Step 1) does not necessitate the exchange of any message, since it only requires
each agent to modify its local view of the problem, and can be done with the agents’
initial respective knowledge without exchanging information about the problem. The
depth-first traversal (Step 2) isO(d′n2), where d′ is the degree of the modified decisional
constraint graph, and n is the number of decision variables. The assignment of virtual
agents (Step 3) finally requires sending O(drq) messages containing constraints, where
dr is the highest degree across random variables only, and q is the number of random
variables.

Overall, the complexity of generating the consistent pseudo-tree still remains negligible
compared to that of the UTIL propagation phase, which remains exponential in the
induced width wi of the pseudo-tree, since Comp-E[DPOP] only changes the operation
performed to project random variables, but does not change the number or sizes of
UTIL messages. However, because Comp-E[DPOP] uses only consistent pseudo-trees,
the induced width wi is necessarily at least as large as if all pseudo-trees were allowed.
This potential increase in the induced width is discussed in more detail in Section 4.5.

Completeness

Section 2.4.4 already gave an intuition behind the DPOP algorithm on DCOPs, which
is that, when computing minx1,...,xn{c1(·) + . . .+ cm(·)}, it is possible to appropriately
distribute each minxi operator over the sum, and push it as deep as possible into the
sum so as to reformulate the problem into an equivalent one that is more distributed in
nature. The completeness of DPOP follows from the use of a pseudo-tree: the property
that two variables appearing in a common constraint must be in the same branch

121

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

enforces that each minxi operator is not pushed too deep into the sum as to violate the
non-commutativity of the min and the sum.

The same intuition holds for Comp-E[DPOP] on StochDCOPs, except that the evalu-
ation function is inserted between the min and the sum: the goal is now to compute
minx1,...,xn {ec1+...+cm(x1, . . . , nn)}. Comp-E[DPOP] makes the least restrictive assump-
tion about the evaluation function e, assuming that it may or may not commute with
the sum (i.e. be linear), or with the min. The use of a pseudo-tree guarantees that the
potential non-linearity of e is not violated. The use of a consistent pseudo-tree also
guarantees that potential non-commutativity with the min is also respected, because
random variables are placed lower than their neighboring decision variables, which
means that the e operator is applied before the min operator. Furthermore, commuting
the e with the min would not make sense, because the resulting optimal values for the
decision variables could then depend on the values of the random variables (since
they would be projected after the decision variables). This would be incompatible with
the definition of a solution to the StochDCOP (Definition 13), which requires that the
solution be independent of the random variables.

Privacy

As already mentioned in Section 4.3.3, the approach based on virtual agents suffers
from a number of drawbacks in terms of agent privacy, topology privacy, and constraint
privacy.

Agent privacy is clearly violated by the fact that, for each random variable r, all agents
constrained with r must communicate to agree on who will simulate the virtual
agent for r, even though they might not necessarily know about each other
initially.

Topology and constraint privacy are also clearly violated, because all constraints in-
volving a given random variable r must be revealed to the agent xr responsible
for simulating the virtual agent for r. This is a privacy breach because some of
these constraints may not necessarily involve xr, and therefore xr initially does
not know about them.

In practice, the approach based on virtual agents effectively centralizes all the knowl-
edge and reasoning about each given random variable into the hands of a single agent
(not necessarily the same for all random variables). In some problem domains, this
may correspond to centralizing a large part of the problem knowledge and of the
computation at a very small number of agents. For instance, in Figure 4.7, assuming
that r1 is simulated by x2 and r2 by x3 (which makes most sense in terms of message

122

4.5. Incomplete, Local Reasoning: Local-E[DPOP]

complexity), then x2 and x3 each have to enforce 4 constraints. Therefore, together
they concentrate 8

9 ≈ 89% of the constraints.

The following sections propose other approaches that do not suffer from the same
privacy leaks, because they do not use consistent pseudo-trees, and they do not con-
centrate all reasoning about a given random variable into the hands of a single agent.
Instead, agents collaborate to reason about uncertainty, in a distributed fashion.

4.5 Incomplete, Local Reasoning: Local-E[DPOP]

Recall from Section 4.4.4 that Comp-E[DPOP] makes the least restrictive assumptions
about the evaluation function e, assuming that it may or may not be linear, and may or
may not commute with the min. To ensure correctness when reformulating the original
problem minx1,...,xn {ec1+...+cm(x1, . . . xn)} by pushing the min and the e into the sum,
it therefore had to use a consistent pseudo-tree. This section proposes a different ap-
proach that adds the assumption that the evaluation function is linear. As a result, it is
able to distribute the e all the way down the sum (as it is assumed to commute with the
sum), reformulating the problem into minx1,...,xn {ec1(·) + . . .+ ecm(·)}. The resulting
problem is then solvable using any traditional DCOP algorithm on the new problem
minx1,...,xn {c1(·) + . . .+ cm(·)}, where ci(·) = eci(·). Notice that this approach only
makes sense if ci(·) remains a cost, i.e. if the evaluation function e is commensurable.

In other words, the agents run the traditional DPOP algorithm on their evaluated
local sub-problems, from which all random variables are locally projected using the
evaluation function (Algorithm 25, line 5); the resulting algorithm is therefore called
Local-E[DPOP], and is illustrated in Figure 4.8. This approach has three important
differences with respect to Comp-E[DPOP], when it comes to complexity, privacy, and
completeness.

Algorithm 25 Local-E[DPOP]’s UTIL propagation for variable x, with parent y
1: UTILx→y : (x, y)→ 0
2: for all constraints ci(x, ·) involving x do
3: if all other decision variables in ci’s scope are higher than x in the pseudo-tree

then
4: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + ci(x, ·)
5: UTILx→y(x, y, ·)← eUTILx→y(x, y, ·)
6: for all messages UTILxj→x(x, ·) received from all children xj do
7: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + UTILxj→x(x, ·)
8: x∗(y, ·)← arg minx {UTILx→y(x, y, ·)}
9: UTILx→y(y, ·)← minx {UTILx→y(x, y, ·)}

10: Send message UTILx→y(y, ·) to parent variable y

123

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

x2r1

x4 r2

x1r1 r2 x3r1 r2

UTILx1→x4(x4)

x4 R G B Y

c 2 2 2 2

UTILx3→x4(x4)

x4 R G B Y

c 2 2 2 2

UTILx4→x2(x2)

x2 R G B Y

c 5 5 5 5

Figure 4.8: Rob-Local-E[DPOP]’s UTIL messages for the problem in Figure 4.1.

Complexity

In terms of information exchange, Local-E[DPOP] has exactly the same complexity
as DPOP running on the decisional part of the StochDCOP, and therefore is O(nDwi),
just like Comp-E[DPOP], where D is the size of the largest decision variable domain.
However, the pseudo-tree no longer needs to be consistent: any pseudo-tree will
suffice, and therefore it is possible to achieve lower values of the induced width wi. For
instance, in Figure 4.8, the pseudo-tree has an induced width of 1 (all UTIL messages
contain a single variable), while Comp-E[DPOP]’s pseudo-tree in Figure 4.7 has an
induced width of 3.

Such large differences in induced widths can also be observed on sensor network
problems, as illustrated in Figure 4.9 on a 5-by-4-sensor, 2-target problem instance. In
Figure 4.9(a), the consistency constraint imposes that, for each target, all 16 sensors
around it must belong to the same branch of the pseudo-tree; in this example, this
constraint is met by putting all 20 variables in a single, common branch. No other
(non-homomorphic) consistent pseudo-tree exists if we enforce that tree edges must
always be between neighboring sensors. This pseudo-tree has an induced width

(a) consistent (b) inconsistent

Figure 4.9: Possible pseudo-trees for a sensor network problem.

124

4.5. Incomplete, Local Reasoning: Local-E[DPOP]

of wi = 15, reached at each virtual agent, each having 15 ancestors (back-edges are not
represented for readability). In contrast, Figure 4.9(b) shows an inconsistent pseudo-
tree (generated by the most branching heuristic presented in Section 4.6.4)) that can
be used by Local-E[DPOP], and whose induced width is only of wi = 5.

Privacy

The privacy properties of Local-E[DPOP] are exactly the same as DPOP. In particular,
the algorithm does not leak privacy upfront like Comp-E[DPOP] does, because it does
not require the use of a consistent pseudo-tree (which leaks agent privacy), and it does
not centralize at a single agent all constraints involving each random variable (which
violates topology privacy and constraint privacy).

Completeness

The performance improvement in Local-E[DPOP] in terms of information exchange
compared to Comp-E[DPOP] comes at a cost in terms of completeness, because it adds
the assumption of linearity of the evaluation function. This means that if the evaluation
function e is indeed linear, then Local-E[DPOP] solves (optimally) a problem that is
a valid reformulation of the original StochDCOP; but if e is non-linear, then Local-
E[DPOP] solves a slightly different problem, and is therefore no longer guaranteed to
produce optimal solutions (or even feasible solutions) to the original StochDCOP. This
is summarized in the following theorem.

Theorem 16. Local-E[DPOP] is complete if any of the two following criteria is satisfied:

1. The evaluation function e is linear, or

2. The pseudo-tree is chosen such that, for each random variable r, for all con-
straints cri involving r, there exists a decision variable xr also involved in all the cri ’s
that is lower in the pseudo-tree than any other decision variable in the cri ’s.

Proof. The proof for the first part of the theorem is straightforward and has already
been given earlier. The proof for the second part is the following. First consider the
simpler case in which each random variable is only involved in a single constraint.
Then Local-E[DPOP] is clearly complete even if e is non-linear, because for each
random variable r, the operator er can be distributed all the way down the sum of
constraints c1(·) + . . . + cm(·) since only one of the ci’s actually depends on r. This
observation in itself is worth a corollary (Corollary 1).

In the more general case, completeness is still guaranteed if the responsibilities for
enforcing all the constraints involving r are all assigned to the same agent xr, because

125

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

xr will then be able to locally first compute the sum of all constraints involving r, and
then apply e to project r. As explained in Section 2.4.4, DPOP assigns the responsibility
for each constraint to its lowest variable in the pseudo-tree. Therefore, if the pseudo-
tree is such that all constraints involving r have the same lowest decision variable xr,
then completeness holds.

Corollary 1. If each random variable is only involved in a single constraint, then Local-
E[DPOP] is complete.

Table 4.2 (top left) illustrates the degradation of solution quality in Local-E[DPOP]

when none of the two criteria in Theorem 16 is satisfied. Each agent reasons about
uncertainty locally, and concludes that its local worst case is always when its neigh-
boring uncertain node(s) choose(s) the same color as itself, regardless of the choice of
this color (which explains the constant UTIL messages in Figure 4.8). Therefore, x1,
x2 and x3 may choose the same color (other than that of x4), resulting in a worst-case
cost of 5, when the optimum is 2.

Table 4.2: Colorings found for the problem in Figure 4.1.

Rob-Local-E[DPOP] Rob-Global-E[DPOP] rooted at x2

B

B

B

Y? ?

B

G

B

Y? ?

max c 5 4

Rob-Global-E[DPOP] rooted at x4 Rob-Global-E[DPOP] rooted at x1

B

B

B

Y? ?

G

B

B

Y? ?

max c 5 3

The same phenomenon can also be observed on the single-target, 4-by-4 sensor net-
work problem instance in Figure 4.4, using the robustness evaluation function. Fig-
ure 4.4(d) shows the optimal solution to the StochDCOP, which is an on/off sensor
configuration with minimal number of on sensors, but in which the target will always
remain in sight of 3 sensors, wherever it goes. This corresponds to an optimal worst-
case utility of 12, decomposable as: 12 for observing the target in its initial position

126

4.6. Incomplete, Global Reasoning: Global-E[DPOP]

with 3 sensors (Eq. (2.2)), plus 12 for observing the target in its next position (whichever
it is) with 3 sensors (Eq. (4.4)), minus 12 for turning on 12 sensors (Eq. (2.1)).

In contrast, Local-E[DPOP] is only able to produce the robust 1-configuration in Fig-
ure 4.4(b), in which the target will only remain in view of 1 sensor in its next position,
which ever it is. This corresponds to a worst-case utility of 12+1−4 = 9 < 12. The intu-
itive reason why Local-E[DPOP] is unable to produce better configurations is because
each sensor independently optimizes its local worst-case utility. Furthermore, for each
sensor on the boundary, there is always a possible move of the target that will make it
become out of sight, and therefore no sensor on the boundary ever takes the risk of
turning itself on. More formally, projecting the random variable tk out of the constraint

in Eq (4.4) yields a utility of mintk

{
uPk (xjPiP , x

jP +1
iP

, xjPiP +1, x
jP +1
iP +1 , tk)

}
= 0, regardless of

the values of the decision variables, so the sensors on the boundary choose to be off to
minimize their local cost (Eq. (2.1)).

Notice that Property 2 in Theorem 16 is equivalent to assuming that the pseudo-tree
is consistent. Intuitively, if this is not the case, then a given random variable may be
projected by more than one agent (as in Figure 4.8), which is the reason for the incom-
pleteness of the algorithm, because each of these agents projects the random variable
locally without coordinating with the other agents. The two algorithms proposed in
the following section partially address this issue by having the agents better coordinate,
through the exchange of information about the dependencies of their respective local
sub-problems on the random variables. Intuitively, the goal is to give the agents a
broader view of the effect of uncertainty on the overall problem, such that, for instance,
the sensors are able to discover that the target actually cannot escape.

4.6 Incomplete, Global Reasoning: Global-E[DPOP]

As explained in the previous section, Local-E[DPOP]’s improvement in complexity
compared to Comp-E[DPOP] can come at a loss in solution quality when the evaluation
function is non-linear. This loss is due to the fact that each agent locally projects the
random variables out of the constraints it is responsible for enforcing, independently
from other agents whose constraints might depend on the same random variables.
Because each agent has only a limited view of the overall problem, it only applies the
evaluation function to a limited subset of the constraints.

This section proposes a simple modification of the approach in Local-E[DPOP] to
partly address this issue, by having agents locally project out random variables like in
Local-E[DPOP], but then report to their parent their corresponding effective costs as
functions of the random variables.

127

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

4.6.1 Sharing Information about Dependencies on Random Variables

Having each agent report to its parent in the pseudo-tree its optimal cost as a function
of the random variables has the effect of centralizing at the root agent the knowledge
about how the overall problem depends on the values of the random variables, given
the decisions already taken by agents below. For this reason, we call this new algorithm
Central-E[DPOP].

Algorithm 26 presents the UTIL propagation phase for Central-E[DPOP]. There are
three noticeable differences with respect to Local-E[DPOP] (Algorithm 25). First,
Central-E[DPOP] projects out all random variables using the evaluation function before
projecting each decision variable like in Local-E[DPOP], but it does so after collecting
and joining the UTIL messages from its children in the pseudo-tree (line 7). This is be-
cause the UTIL messages received can now depend on random variables, and therefore
its is better to first compute the join and then apply the evaluation function e, in order
not to further violate e’s potential non-linearity. In Local-E[DPOP], the order does not
matter since all UTIL messages received are independent on all random variables, and
therefore the projection is performed first for performance reasons.

Algorithm 26 Central-E[DPOP]’s UTIL propagation for variable x, with parent y
1: UTILx→y : (x, y)→ 0
2: for all constraints ci(x, ·) involving x do
3: if all other variables in the scope of ci are higher than x in the pseudo-tree

then
4: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + ci(x, ·)
5: for all messages UTILxj→x(x, ·) received from all children xj do
6: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + UTILxj→x(x, ·)
7: EV ALx→y(x, y, ·)← eUTILx→y(x, y, ·)
8: x∗(y, ·)← arg minx {EV ALx→y(x, y, ·)}
9: UTILx→y(y, ·)← UTILx→y(x

∗(y, ·), y, ·)
10: Send message UTILx→y(y, ·) to parent variable y

The second important difference is in computing the UTIL message that each agent
reports to its parent (line 9). In Central-E[DPOP], this is done by substituting the current
variable by its optimal value in the join of all received UTIL messages. As a consequence,
the result can now depend on one or more random variables. Notice however that
the way the optimal value for the current variable is computed has conceptually not
changed (line 8); in particular, this optimal value must still be independent of all
random variables, as required by the definition of a StochDCOP (Definition 13).

The third difference is that, contrary to Comp- and Local-E[DPOP], Central-E[DPOP] is
also applicable when the evaluation function e is non-commensurable. This is a direct
consequence of the way the outgoing UTIL message is computed. In Comp-E[DPOP]

it is a direct output of e, and in Local-E[DPOP], it is the min of an output of e, and

128

4.6. Incomplete, Global Reasoning: Global-E[DPOP]

therefore, in both cases, the output of e needs to remain a cost. On the contrary, in
Central-E[DPOP], the outgoing UTIL message is obtained by a variable substitution in
the join of all received UTIL messages, and therefore necessarily remains a cost. The
evaluation function is only used to compute the optimal value of the current decision
variable.

While this approach allows the agents to share information about cross-dependencies
on random variables in an effort to improve the quality of the solution found, this
comes at an increase in complexity, since UTIL messages can now depend on random
variables in addition to decision variables. The following section proposes a way to
limit the propagation of information about dependencies on random variables, in
order to cut down this increase in complexity.

4.6.2 Limiting the Propagation of Information

As presented in the previous section, Central-E[DPOP] propagates up the pseudo-tree
the dependencies on all random variables, hereby centralizing this information at the
root agent. Intuitively, given that each random variable might have only a limited, local
influence on the overall problem, centralizing at the root the dependency information
about all random variables does not seem efficient.

We now propose a modification of Central-E[DPOP] that stops the propagation of
information about the dependency on any particular random variable r as soon as no
more constraints depend on r. More formally, the propagation is stopped as soon as it
reaches the lowest common ancestor (lca) in the pseudo-tree of all decision variables
that are responsible for enforcing constraints involving r. This is achieved by project-
ing r once and for all using the evaluation function (Algorithm 27, line 10). Notice that
this only makes sense if the evaluation function e is commensurable. The resulting
algorithm is called Global-E[DPOP] because it still enables the agents to acquire a
global view of the influences of random variables on the overall problem, without
centralizing all information at the root.

This is illustrated in Figure 4.10: agent a(x4) receives UTIL messages from x1 and x3

that now indicate the costs of their respective sub-problems, as functions of x4 as
well as of the two random variables r1 and r2. The UTIL message received by x2 also
depends on r1, but not on r2, because lca(r2) = x4 is below x2 in the pseudo-tree. The
UTIL messages are represented in partially intensional form rather than in pure table
form for conciseness.

Algorithm 28 presents the distributed protocol used in Global-E[DPOP] to compute the
lcas for all random variables. It is a two-phase algorithm that operates on the pseudo-
tree. During the first, bottom-up phase, lists of random variables are propagated up
the pseudo-tree, such that each variable x discovers the list of random variables its

129

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Algorithm 27 Global-E[DPOP]’s UTIL propagation for variable x, with parent y
1: UTILx→y : (x, y)→ 0
2: for all constraints ci(x, ·) involving x do
3: if all other variables in the scope of ci are higher than x in the pseudo-tree

then
4: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + ci(x, ·)
5: for all messages UTILxj→x(x, ·) received from all children xj do
6: UTILx→y(x, y, ·)← UTILx→y(x, y, ·) + UTILxj→x(x, ·)
7: EV ALx→y(x, y, ·)← eUTILx→y(x, y, ·)
8: x∗(y, ·)← arg minx {EV ALx→y(x, y, ·)}
9: UTILx→y(y, ·)← UTILx→y(x

∗(y, ·), y, ·)
10: for all random variables r for which x = lca(r) do
11: UTILx→y(y, ·)← erUTILx→y

(y, ·)
12: Send message UTILx→y(y, ·) to parent variable y

x2r1

x4r2

x1 x3

UTILx1→x4(x4, r1, r2)

x4 c

B

0 if r1 6= Y 6= r2

2 if r1 = Y = r2

1 else

R,G, Y

0 if r1 6= B 6= r2

2 if r1 = B = r2

1 else

UTILx3→x4(x4, r1, r2)
= UTILx1→x4(x4, r1, r2)

UTILx4→x2(x2, r1)

x2\r1 R G B Y

R 2 2 4 2
G 2 2 4 2
B 2 2 4 2
Y 2 2 2 4

Figure 4.10: Rob-Global-E[DPOP]’s UTIL messages for the problem in Figure 4.1.

subtree depends on. The second, top-down phase proceeds as follows. Each decision
variable x computes the list Rx (line 9) of random variables r such that at least two
children of x have subtrees that depend on r (i.e. r ∈ ∪1≤i<j(Ri ∩Rj)), or such that x is
responsible for enforcing a constraint involving r (i.e. r ∈ R0). It then applies a filter
to this list Rx by only keeping the random variables whose lcas have not already been
found to be higher in the pseudo-tree (line 12). Variable x assigns itself as the lca of
the remaining random variables (line 14). Finally, it reports to each of its children the
relevant random variables whose lcas remain to be found (line 16).

To compute all lcas, Algorithm 28 exchanges exactly 2×(n−1) messages, where n is the
number of decision variables (one message up and one message down each tree-edge
in the pseudo-tree). Each message contains O(q) random variables, where q is the

130

4.6. Incomplete, Global Reasoning: Global-E[DPOP]

Algorithm 28 Distributed computation of the lcas, for each decision variable x
1: // Bottom-up phase
2: R0 ← {r ∈ R | x is responsible for enforcing a constraint involving r}
3: wait for all {Ri}i=1...t from all children
4: Rx ← ∪i≥0Ri
5: send Rx to parent (if any)
6: if Rx = ∅ then
7: execute UTIL propagation

8: // Top-down phase
9: Rx ← ∪1≤i<j(Ri ∩Rj) ∪R0

10: if x has a parent p then
11: wait for Rp from parent
12: Rx ← Rx ∩Rp
13: for all r ∈ Rx do
14: lca(r)← x
15: for all children i = 1 . . . t such that Ri 6= ∅ do
16: send (Ri ∩Rp)−Rx to child i
17: execute UTIL propagation

total number of random variables in the StochDCOP. The complexity of computing all
lcas is therefore O(nq) in terms of information exchange, which is largely negligible
compared to the complexity of the UTIL propagation phase (Section 4.6.6).

4.6.3 Related Work on Resource-Constrained DCOP

An interesting parallel can be made between this work and previous work on Resource-
Constrained DCOPs (RCDCOPs) by Matsui et al. [2008]. RCDCOPs are DCOPs in which
some of the constraints are given the special status of resource constraints, which
are simply n-ary, additive capacity constraints. The authors propose to handle these
constraints in a special manner, by introducing virtual variables that are responsible for
enforcing these constraints. The parallel with StochDCOPs can be made by comparing
a given resource constraint in the RCDCOP framework with the common dependency
on a given random variable in the StochDCOP framework.

Their first approach to solve RCDCOPs, which they call serialization of resource-
constrained variables, consists in generating a pseudo-tree using an algorithm that
treats resource constraints like normal n-ary constraints. As a result, all decision vari-
ables participating in the same resource constraint are positioned in the same branch
of the pseudo-tree. A virtual variable enforcing the resource constraint is then added
as a child of the lowest of these variables. This approach is very much comparable
to their own later work on virtual agents in QDCOPs (Section 4.3.3), which we have
adapted to produce Comp-E[DPOP]. Furthermore, the approach they use to gener-

131

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

ate a (consistent) pseudo-tree is conceptually the same as the one we propose for
StochDCOPs in Section 4.4.3.

In a second approach, Matsui et al. propose to decompose each n-ary resource con-
straint into lower-arity constraints, in order to allow decision variables participating in
a given resource constraint to appear in different branches of the pseudo-tree. Virtual
variables then need to be added not only once per resource constraint, but at multiple
places in the pseudo-tree, including at lcas. This methodology is comparable to our
StochDCOP methodology that consists in allowing the use of inconsistent pseudo-
trees, and sharing information about the dependencies on random variables like in
Global-E[DPOP].

4.6.4 Influence of the Choice of the Pseudo-tree

An important property of Global-E[DPOP] is that, contrary to all other E[DPOP] algo-
rithms presented so far, if the evaluation function is not linear, then the solutions it out-
puts depend on the choice of the pseudo-tree. This is because each pseudo-tree defines
a different, incomparable reformulation of the original StochDCOP, by distributing the
evaluation function e over the sum of the constraints in a different manner.

This phenomenon is illustrated in Table 4.2, and can be explained intuitively as follows.
Given a random variable r, all variables that are below lca(r) in the pseudo-tree make
misinformed decisions when they project themselves out, because they do not have
a global view of the influence of r on the overall problem. For instance, when the
pseudo-tree is rooted at x4 (Table 4.2, bottom left), x1, x2 and x3 are all below lca(r1) =

lca(r2) = x4, only see the influences of r1 and r2 on their respective local sub-problems,
and may end up choosing the same color blue, resulting in the same, low quality
coloring as Rob-Local-E[DPOP] (top left). On the other hand, if the pseudo-tree is
rooted at x2 (top right), then x2 becomes lca(r1) and is able to make better informed
decisions, resulting in a better worst-case cost of 4. Rooting the pseudo-tree at x1

instead (bottom right) yields an even better worst-case cost of 3, which is however still
higher than the true optimal worst-case cost of 2 found by Rob-Comp-E[DPOP].

Table 4.3 illustrates the same phenomenon on a 4-by-4, single-target sensor network
problem, using the robust evaluation function (back-edges and random variables
are omitted for readability). The idea is that various pseudo-trees can result in the
lca (dash-circled) for the random variable being positioned at various depths. Below
the lca, the sensors have not yet gained a global view of the influence of the random
variable on the overall problem: they believe that, in the worst-case, the target can
always escape, and therefore they always choose to be off (except if they can observe
the target in its initial, known position). Only the sensors above the lca realize that,
wherever it goes, the target will in fact remain in sight of 4 sensors. The utility reported

132

4.6. Incomplete, Global Reasoning: Global-E[DPOP]

Table 4.3: Pseudo-trees for a sensor network problem, varying the heuristic.

heuristic most branching most connected most exploration least connected

utility 9 9 10 12
max UTIL 25 × 81 = 28 26 × 81 = 29 29 × 81 = 212 212 × 81 = 215

is the worst-case utility, and max UTIL is the number of entries in the largest UTIL
message (Section 4.6.6).

The quality of the solution found is therefore tightly correlated with the depth of the
lca in the pseudo-tree: the higher the lca, the higher the number of sensors that will
blindly choose to be off, and the lower the chance of having enough on sensors to keep
track of the target in its next position. Consider for instance the pseudo-tree obtained
using the traditional most connected heuristic (Table 4.3). The lca is placed relatively
high in the pseudo-tree (at depth 6, assuming the root has depth 1), and almost all
outer sensors are positioned below the lca, and are therefore turned off (since they
cannot observe the target in its initial position). With the only 6 sensors remaining, the
best achievable solution is a robust 1-configuration, of worst-case utility 9, which is
computed as a utility of 12 for observing the target in its initial position with at least
3 sensors, plus 1 for observing the target in its next position with, in the worst case,
only 1 sensor, minus 4 for turning on 4 sensors.

In contrast, consider the pseudo-tree obtained with the reverse, least connected heuris-
tic. The lca is positioned very low in the pseudo-tree (at depth 13), with the additional
property that the only sensors below the lca are all the inner sensors, which can observe
the target in its initial position, and therefore three of them will logically be turned on.
As a result, all outer sensors are aware of the fact that the target cannot escape, and
Global-E[DPOP] is able to discover an optimal, robust 3-configuration, of worst-case
utility 12 (= 12 + 12− 12).

Table 4.3 also illustrates the pseudo-trees obtained with two problem-specific heuris-
tics. The most branching heuristic performs two long, vertical traverses of the con-
straint graph, hereby generating a pseudo-tree that contains of two long branches,
and has an induced width lower than with the most connected heuristic. The lca is
however positioned even higher (at depth 4), and Global-E[DPOP] can also only find ro-
bust 1-configurations. The second, most exploration heuristic explores the constraint

133

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

graph using an efficient, zig-zagging pattern that results in the sensors gathering a
global picture of uncertainty relatively early in the bottom-up UTIL propagation (at
depth 10). Interestingly, this enables Global-E[DPOP] to discover the existence of
robust 2-configurations, of worst-case utility 10 (= 12 + 6− 8).

4.6.5 Hybrid E[DPOP] for Non-commensurable Evaluation Functions

As mentioned in Section 4.6.2, Global-E[DPOP] is only applicable when the evaluation
function e is commensurable (Definition 15), because it is used to project random
variables at the lcas, and the output of the projection is then sent up the pseudo-tree,
and therefore must remain a commensurable to a cost. As a counter-example, Global-
E[DPOP] cannot be used to solve StochDCOPs in which the evaluation function is the
consensus function (Eq. (4.2)), because the output of the consensus operator P is a
probability, not a cost. In this case, only Central-E[DPOP] can be used, which performs
worse in terms of amount of information exchanged (Section 4.6.2).

In order to overcome this limitation, we now propose a hybrid version of Global-
E[DPOP] that is applicable to StochDCOPs with non-commensurable evaluation func-
tions. It is based on the observation that Global-E[DPOP] uses the evaluation function e
in two different places, for two different purposes (Algorithm 27). First, it evaluates
the join of all UTIL messages received, in order to compute an optimal value to each
decision variable that is independent of any random variable (lines 7 and 8). This first
use of the evaluation function is also present in Central-E[DPOP], and does not require
commensurability, because the output of e is only used as an input to an arg min. Sec-
ond, it uses er to finally project out each random variable r at lca(r), in order to limit
the propagation of information about the dependency of the cost on r (lines 10 and 11).
This second use of the evaluation function does require commensurability, because
the output of er must be a cost that is then sent to the parent in the pseudo-tree.

When er is non-commensurable, we propose to replace it on line 11 with another,
commensurable evaluation function er. This results in hybrid versions of Global-
E[DPOP] that use two evaluation functions: the original one defined in the StochDCOP
on line 7, and an auxiliary, commensurable one on line 11. For instance, using the
notations introduced in Section 4.1.2, we call Cons/Exp-Global-E[DPOP] the version of
Global-E[DPOP] that uses the consensus evaluation function to compute the optimal
values for decision variables, and then the expectation function to finally project
random variables. Notice that a similar approach can be used to hybridize Local-
E[DPOP], by having each variable behave like an lca in Global-E[DPOP].

134

4.7. Equivalence Theorems

4.6.6 Complexity Analysis

As argued in Section 4.6.2, computing the lcas has a complexity of O(nq) in terms
of information exchange, where n is the number of decision variables, and q is the
number of random variables. The UTIL propagation phase is therefore still the main
bottleneck of the overall algorithm. During this phase, Global-E[DPOP] exchanges
UTIL messages that are conceptually the same as in DPOP, except that they may now
also depend on random variables, and not only on decision variables. The worst
case is when the root of the pseudo-tree as well as all leaves must enforce constraints
involving all random variables; in that case, each UTIL message is a function of all
random variables. The worst-case complexity in terms of information exchange in
Global-E[DPOP] is thereforeO(nDwi

max∆q
max), whereDmax and ∆max are the respectively

maximum domain sizes for decision and random variables, and wi is the induced
width of the pseudo-tree.

To illustrate the added complexity of the global approach with respect to the local
approach, consider the messages exchanged by Rob-Global-E[DPOP] on our graph
coloring problem (Figure 4.10), compared to those exchanged by Rob-Local-E[DPOP]

(Figure 4.8). The largest UTIL message sent by the former contains 3 variables, while
the latter only exchanges single-variable messages. A similar observation can be made
on the sensor network problem in Table 4.3, except that, in this problem domain, not
all variables have the same domain size, and therefore it is more relevant to count
the number of entries in the largest UTIL message, rather than just the number of
variables. More precisely, all decision variables are binary (sensors can be either on
or off), therefore Dmax = 2, and the single random variable has domain size ∆max = 8

(corresponding to the 8 directions of motion for the target in Figure 4.2). One can
observe an interesting tradeoff between solution quality and complexity in terms of
information exchange: the heuristics that produce low-complexity pseudo-trees only
generate poor solution qualities, while higher solution qualities (and even optimality)
can be achieved by heuristics that produce higher-complexity pseudo-trees.

4.7 Equivalence Theorems

We now prove that, when the evaluation function e is linear, Global-E[DPOP] produces
the same solutions as Local-E[DPOP]. We then show that Central-E[DPOP] and Global-
E[DPOP] produce the same solutions, even if the evaluation function e is not linear.

4.7.1 Global-E[DPOP]≡ Local-E[DPOP]

Theorem 17. If the evaluation function is linear, then Local-E[DPOP] and Global-
E[DPOP] produce the same solutions to the StochDCOP.

135

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Proof. Starting from Global-E[DPOP], we provide a procedure that transforms this
algorithm into the Local-E[DPOP] algorithm, without changing the solution chosen
to the StochDCOP. The procedure is iterative on the random variables, and given a
random variable r, recursive on the depth in the DFS where r is finally projected out.

Let r be a random variable. Let x be a variable in the DFS that is responsible for
projecting out r (in the base case of Global-E[DPOP], x = lca(r)). We now show
how the projection of r can be pushed down into x’s child variables y1, . . . yn, without
changing x’s optimal value x∗ nor the cost it reports to its parent. Let cx(x, r, ·) be x’s
local cost, which actually does not necessarily depend on r, and let c∗i (x, r, ·) be the
cost reported by yi in its UTIL message to x (also possibly independent of r). Variable x
reports the following optimal aggregated cost:

c∗x(·) = min
x

{
ercx+

∑
i c
∗
i
(x, ·)

}
= min

x

{
ercx(x, ·) +

∑
i

erc∗i (x, ·)
}

(4.5)

where (4.5) follows from the linearity of er. Furthermore:

erc∗i (x, ·) = erf :(x,r,·)→ci(x,y∗i (x,·),r,·)(x, ·) = min
yi

{
erci(x, yi, ·)

}
(4.6)

where (4.6) follows from the definition of y∗i (x, ·). We can therefore modify the current
algorithm into one that has each yi project out r and report:

κ∗i (x, ·) = min
yi

{
erci(x, yi, ·)

}
.

In this modified algorithm, variable x reports c∗x(·) = minx
{
ercx(x, ·) +

∑
i κ
∗
i (x, ·)

}
,

which is the same cost as in (4.5), and is the one that Local-E[DPOP] would report. It
follows from the same derivation that x also makes the same decision:

x∗(·) = arg minx

{
ercx+

∑
i c
∗
i
(x, ·)

}
= arg minx

{
ercx(x, ·) +

∑
i κ
∗
i (x, ·)

}
,

which is the decision that Local-E[DPOP] would make. Therefore, without changing
the solution, we have transformed the initial algorithm in which variable x performs as
Global-E[DPOP], into one in which it performs as Local-E[DPOP], and the projection
of r has been pushed down into its children in the DFS. We can now recursively apply
the same procedure to each of the children.

One important corollary of this equivalence theorem is that, when the evaluation
function is linear, Global-E[DPOP] is complete, since it produces the same solutions as
Local-E[DPOP], which is complete as per Theorem 16. However, it is always better to
use Local-E[DPOP], because its complexity is lower than that of Global-E[DPOP].

136

4.7. Equivalence Theorems

Another interesting theorem can be derived from Theorem 17, which applies to the
special case of Rob-E[DPOP], when the StochDCOP has a special, uniform worst case
property.

Theorem 18. Rob-Local-E[DPOP] and Rob-Global-E[DPOP] produce the same solutions
on uniform worst case problems, in which, for any given assignment to the decision
variables, the worst-case assignment to the random variables is the same for all agents.
More formally, in the single-decision variable, single-random variable case:

∀x∃r0∀ci(x, r) r0 = arg max
r
{ci(x, r)}

where r0 may be a function of x.

Proof. The proof is the same as for Theorem 17, except that Equation (4.5), which is
the only place in the proof where the assumption of linearity of the evaluation function
is used, must be replaced by the following (in reversed order):

min
x

{
ercx(x, ·) +

∑
i

erc∗i (x, ·)
}

= min
x

{
max

r
{cx(x, r, ·)}+

∑
i

max
r
{c∗i (x, r, ·)}

}
(4.7)

= min
x

{
cx(x, r0(x, ·), ·) +

∑
i

c∗i (x, r0(x, ·), ·)
}

(4.8)

= min
x

{
max

r

{
cx(x, r, ·) +

∑
i

c∗i (x, r, ·)
}}

(4.9)

= min
x

{
ercx+

∑
i c

∗
i
(x, ·)

}
(4.10)

= c∗x(·) (4.11)

where cx and c∗i may actually not even depend on r, and Equations (4.7) and (4.8) follow
from the uniform worst case property.

One example of problem class that exhibits this uniform worst case property is the
Kidney Exchange Problem (StochDKEP) form Section 4.2.4: given a random variable
representing the probability of survival of a given patient, given a choice of exchanges
that the agents decide to carry out, the worst-case scenario is the same for all agents,
and corresponds to the scenario in which the patient dies. In fact, the StochDKEP class
has an even stronger property, since the worst-case scenario does not even depend on
the choice of exchanges (r0 is independent of x).

4.7.2 Central-E[DPOP]≡Global-E[DPOP]

Theorem 19. Global-E[DPOP] and Central-E[DPOP] produce the same solutions to
the StochDCOP, even if the evaluation function is not fully linear, but only satisfies the

137

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

following weaker property:

∀c1independent of any random variable,∀c2 ∀x ec1+c2(x) = c1(x) + ec2(x) .

Intuitively, this property means that, given a random variable r and a constant K, we
have that erK+c(r) = K + erc(r). In particular, this is the case of the robust evaluation
function, for which supr{K + c(r)} = K + supr{c(r)}.

Proof. The exact same mechanism as in the proof of Theorem 17 can be applied to
transform Central-E[DPOP] into Global-E[DPOP] without changing the solution pro-
duced. The linearity assumption was only used in Equation (4.5), but this assumption
is now no longer necessary for the equation to hold; this is because variable x is above
the lca of all variables responsible for enforcing a constraint over r, and therefore only
one of the terms in the sum cx +

∑
i c
∗
i can depend on r.

A consequence of this theorem is that Exp-Global-E[DPOP] produces the same so-
lutions as Exp-Central-E[DPOP], which is then complete, and Rob-Global-E[DPOP]

produces the same solutions as Rob-Central-E[DPOP]. For these two evaluation func-
tions, Central-E[DPOP] is therefore dominated by Global-E[DPOP], since the latter
produces the same solutions, but has a lower complexity.

4.8 Approximations by Sampling Scenarios

In some problem domains with rich stochastic uncertainty, the domains of the random
variables may be too large to handle, or even infinite, as suggested in Definition 13.
The approach commonly used to address this issue is then to sample the probability
distributions of the random variables, and replace their exact domains with smaller,
finite, sampled domains. Intuitively, when random variables represent uncertain,
future events, sampling corresponds to drawing possible scenarios of future events
that are representative of the probability distributions of those events. This section
presents how distributed sampling can be performed in the context of StochDCOPs.

4.8.1 Motivation and Challenges

All E[DPOP] algorithms presented in the previous section rely on applying the evalua-
tion function e to project random variables. Among the three examples of evaluation
functions proposed in Section 4.1.2, only the worst-case evaluation function does not
depend on the probability distribution πr of each random variable r. On the other
hand, both the expectation and the consensus evaluation functions involve comput-
ing integrals over πr, which may or may not be possible to perform in closed form,

138

4.8. Approximations by Sampling Scenarios

depending on the nature of πr, especially if the domain of r is infinite. Furthermore,
Global-E[DPOP] exchanges UTIL messages that are functions of random variables, and
therefore assumes that these functions can be represented in some convenient form.

To address this issue, we propose to use the traditional method that consists in sam-
pling the probability distribution πr, to produce a finite list Sr of representative values
for the random variable r. Sampling has a certain number of advantages; first, it makes
it easy to compute approximations of the evaluation functions, as already described in
Section 4.1.2. By discretizing the (possibly infinite) domains of the random variables, it
also makes it possible to represent Global-E[DPOP]’s UTIL messages in closed form.
Finally, even when the random variable domains are finite, but large, sampling is able
to cut down the complexity by only considering a small number of representative
values for the random variables, instead of exhaustively enumerating all alternatives.
This approach results in approximate algorithms, whose solution qualities increase
with the number of samples chosen for each random variable.

While sampling is a commonly used method in centralized stochastic optimization,
its application in the distributed StochDCOP setting is not necessarily straightfor-
ward, and raises some challenges. In the virtual agents approach to StochDCOPs,
sampling is not an issue, because all the reasoning about any given random variable
is centralized at a single virtual agent, which is the only agent that needs to apply
the evaluation function; therefore sampling is actually centralized (Table 4.4). In all
other approaches previously presented however, multiple agents may have to apply
the evaluation function, and therefore may need to sample probability distributions.
This raises the question of whether and how agents should coordinate to perform the
sampling.

Table 4.4: The E[DPOP] family of algorithms.
final projection of random variables

at virtual agents at leaves at lcas at roots

ch
o

o
si

n
g

sa
m

p
le

s at virtual Comp-
agents E[DPOP]

at leaves
indep. sampling
+ Local-E[DPOP]

at lcas
Local- Global-

E[DPOP] E[DPOP]

at roots
Central-
E[DPOP]

Section 4.8.2 first looks at the possibility of agents independently sampling probability
distributions, without coordinating to choose the same sets of samples. Section 4.8.3
then proposes a method to perform collaborative sampling. Having all agents agree
on the sample set of values for a given random variable r is not a trivial task, since

139

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

the agents whose costs depend on r initially do not necessarily even know each other.
However, experimental results will later show that agreeing on samples can yield
significant improvements in solution quality.

4.8.2 Independent Sampling

The simplest approach to sampling in the distributed setting is for each agent to
sample the probability distributions for the random variables independently of all the
other agents. This can be applied to Local-E[DPOP]: each agent produces a sample
list Sr of values for each random variable r involved in a constraint it is responsible
for enforcing, and then projects r using the corresponding approximate evaluation
function (Section 4.1.2). This results in choosing samples at the leaves of the pseudo-
tree, as summarized in Table 4.4.

Independent sampling however has the inconvenient drawback of agents reasoning on
potentially different sample lists Sr for the same random variable r. A possible reason
for this is that most sampling methods require drawing numbers from a uniform distri-
bution, using a pseudo-random number generator (PRNG). If all agents do not use the
same seed for the PRNG, then independent sampling of the probability distribution πr
will result in different sample lists Sr for r. Even if the algorithm imposes a seed, inde-
pendent sampling may still produce different sample lists if all agents do not share the
exact same knowledge of the probability distribution πr. In many real-life, multi-agent
problems under uncertainty, the probability distributions that describe the sources of
uncertainty in the problem are not necessarily known a priori to all agents; instead,
each agent learns distributions based on observed past events. Agents may therefore
have varying models for the distribution πr of a common random variable r, which
leads to varying sample lists Sr.

Having each agent use a different sampled domain Sr for r makes it impossible to
use Global-E[DPOP] and Central-E[DPOP], because these algorithms exchange UTIL
messages that are functions of r, and two UTIL messages using inconsistent sample
domains Sr would be impossible to join. More generally, it is necessary for all variables
that are below the position in the pseudo-tree where r is finally projected to use the
same sample domain Sr; this is the reason for the grayed-out top triangle in Table 4.4.

Another important consequence of using inconsistent sampled domains Sr in Local-
E[DPOP] is that this can yield lower solution qualities than when agents agree on Sr,
as demonstrated by the experimental results in Section 4.9.3. The following section
proposes a distributed algorithm to make the agents come to an agreement on Sr for
each random variable r.

140

4.8. Approximations by Sampling Scenarios

4.8.3 Collaborative Sampling

Local-E[DPOP] (Section 4.5) has each agent locally project all random variables out of
its local subproblem, and then report to its parent the resulting cost that is therefore
independent of all random variables. As argued in the previous section, this makes
it possible to use independent sampling. On the other hand, Global- and Central-
E[DPOP] (Section 4.6) also perform the same local projection of each random variable r,
but then they report the resulting effective costs as functions of r. The information on
the dependency of costs on r propagates up the pseudo-tree until r is finally projected
out, which happens at the root in Central-E[DPOP], and at lca(r) in Global-E[DPOP].
All variables below the position where r is finally projected out must necessarily use
the same sample domain Sr for r. We propose to enforce this by assigning to the
agent that finally projects out r the additional responsibility of initially choosing Sr.
However, because that agent initially does not necessarily know anything about r, we
have each agent xi concerned with r propose a sample list Sir; the Sir’s then only need
to be merged and down-sampled to produce a common sample list Sr of the desired
size.

Algorithm 29 Collaborative sampling procedure, for each decision variable x
1: // Bottom-up phase
2: R0 ← {r ∈ R | x is responsible for enforcing a constraint involving r}
3: S0 ← {sample(πr) | r ∈ R0}
4: wait for all {Ri,Si}i=1...t from all children
5: Rx ← ∪i≥0Ri
6: Sx ← ∪i≥0Si
7: send {Rx,Sx} to parent (if any)
8: if Rx = ∅ then
9: execute UTIL propagation

10: // Top-down phase
11: S ← ∅ // all known sample sets
12: Rx ← ∪1≤i<j(Ri ∩Rj) ∪R0

13: if x has a parent p then
14: wait for {Rp,Sp} from parent
15: S ← Sp
16: Rx ← Rx ∩Rp
17: for all r ∈ Rx do
18: lca(r)← x
19: Sr ← sample(∪Sr∈SxSr)
20: S ← S ∪ {Sr}
21: for all children i = 1 . . . t such that Ri 6= ∅ do
22: send {(Ri ∩Rp)−Rx, {Sr ∈ S | r ∈ Ri}} to child i
23: execute UTIL propagation

141

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Algorithm 29 is a collaborative sampling procedure for Global-E[DPOP], in which
the choice of Sr happens at lca(r). This algorithm is an extension of Algorithm 28 to
compute the lcas. Another possible approach would be to first compute the lcas, and
only then compute Sr; this would possibly reduce the total amount of information
exchanged (as candidate sample lists would only propagate up to the lcas instead of
up to the root), but these improvements would remain negligible compared to the
overall complexity of Global-E[DPOP], as argued below. In Algorithm 29, messages
containing random variables are augmented with corresponding sample domains for
the random variables. During the first, bottom-up phase, proposed sample domains
are merged and propagated all the way to the root. These merged sample domains are
then sent back down until the lca for a specific random variable r is discovered, and the
corresponding merged sample domain is down-sampled (line 19) to produce the final
common sample domain Sr for r. The chosen Sr is then propagated downwards to all
agents whose subtrees depend on r (line 22). This algorithm can be easily adapted for
use with Central-E[DPOP], by down-sampling and choosing Sr at the root rather than
at the lca.

The complexity of this algorithm depends on the desired size ∆max of the sample
domains for the random variables, which is taken as a parameter of E[DPOP]. The
first, bottom-up phase exchanges exactly (n− 1) messages (where n is the number of
decision variables), each message containing at most q random variables (where q is the
total number of random variables in the StochDCOP), and one merged sample domain
of size at most n∆max for each random variable, which sums up to an information
exchange that is O(n2q∆max). The second, top-down phase has the same worst-case
complexity. Overall, this is still largely negligible compared to the complexity of the
UTIL propagation phase in Global-E[DPOP], which is O(nDwi

max∆q
max), where Dmax is

the maximum domain size of decision variables, and wi is the induced width of the
pseudo-tree.

4.8.4 Consensus vs. Expectation

In the centralized setting, for stochastic optimization problems in which the goal is
to minimize the expected cost (i.e. the evaluation function is ec(·) = E [c(·)]), Bent and
van Hentenryck [2004] have shown that it can be more efficient to make decisions that
maximize the probability of optimality, instead of decisions that have lowest expected
cost. In other words, they have shown that it can be better to use the consensus opera-
tor to project random variables, instead of the expectation operator (Section 4.1.2). The
intuition behind this result is that the expectation approach can have a higher com-
plexity than consensus, and therefore, when sampling is used, consensus can process
more samples than expectation in the same amount of time.

Indeed, the expectation approach computes the optimal value for a decision variable x

142

4.8. Approximations by Sampling Scenarios

as follows:

x∗ = arg min
x
{Er [c(x, r)|x]} ≈ arg min

x

{∑
r∈Sr

c(x, r)

}
which generally requires evaluating the cost c(x, r) (i.e. checking the constraint c)
against each possible assignment to x, in each possible scenario (i.e. for each value of
r ∈ Sr). In many real-life problems, computing c(x, r) for given values of x and r can
require solving an expensive sub-problem, and doing it for all pairs (x, r) ∈ Dx × Sr
can become unreasonably expensive. In contrast, the consensus approach computes
the following:

x∗ = arg min
x
{Pr[c(x, r)|x]} ≈ arg min

x

{
−
∣∣∣∣{r ∈ Sr | x = arg min

x′
c(x′, r)

}∣∣∣∣}
which only requires finding the optimal value for x for each value of r, and can often be
done without having to explicitly compute the cost c(x, r) of each possible assignment
to both x and r.

Algorithm 30 Computational steps for the Exp-Local- approach.
1: x∗ ← null; c∗ ←∞
2: for each decision x ∈ Dx do
3: c← 0
4: for each scenario r ∈ Sr do
5: c← c+ 1

|Sr|c(x, r) // 1 constraint check
6: if c > c∗ then continue to next decision
7: if c ≤ c∗ then
8: x∗ ← x; c∗ ← c
9: Er [c(x∗, r)|x∗]← c∗

Algorithms 30 and 31 present in more details the computational steps performed
by the expectation and consensus approaches respectively, in the particular case
of non-negative costs (which allows for performance improvements). In the worst
case, the expectation approach requires |Dx| · |Sr| constraint checks (CCs) to compute
x∗ = arg minx∈Dx {Er [c(x, r)|x]} and report Er [c(x∗, r)|x∗] using in Eq. (4.1). On the
other hand, in order to compute x∗ = arg maxx∈Dx {Pr[c(x, r)|x]} using Eq. (4.2), and
report Er [c(x∗, r)|x∗] as in Eq. (4.1), for each scenario (Algorithm 31, line 4), consensus
computes an optimal decision x′∗, which requires 1 CC per x′ ∈ Dx (line 7), but it
might not be necessary to consider all values of r (all scenarios) to find the decision x∗

with the highest probability of optimality π[x∗]. The exploration can be interrupted
as soon as the remaining scenarios are too improbable for the second-best solution
(of probability of optimality π2) to catch up with the first best (line 15). In the best
case, when the first 1

2 |Sr| scenarios have the same optimal decision, consensus only
performs 1

2 |Sr|(|Dx|+ 2) CCs (where the +2 comes from line 16). However, in the worst
case it requires |Sr|(|Dx|+ 1) CCs, which is |Sr|more than expectation.

143

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

Algorithm 31 Computational steps for the Cons/Exp-Local- approach.
1: ∀x ∈ Dx π[x]← 0 // initial (non-normalized) probabilities of optimality
2: x∗ ← null
3: π2 ← 0 // second-best (non-normalized) probability of optimality
4: for each scenario ri ∈ Sr = {r1, . . . , rk} do
5: x′∗ ← null; c′∗ ←∞
6: for each decision x′ ∈ Dx do
7: c′ ← c(x′, ri) // 1 constraint check
8: if c′ < c′∗ then
9: x′∗ ← x′; c′∗ ← c′

10: π[x′∗]← π[x′∗] + 1
11: if π[x′∗] ≥ π[x∗] then
12: if x′∗ 6= x∗ then π2 ← π[x∗]
13: x∗ ← x′∗

14: else if π[x′∗] > π2 then π2 ← π[x′∗]
15: if k − i ≤ π[x∗]− π2 then break
16: Er [c(x∗, r)|x∗]← 1

|Sr|
∑

ri∈Sr
c(x∗, ri) // |Sr| constraint checks

Therefore, while consensus inherently produces solutions that may have a lower ex-
pected quality than expectation (since it maximizes the probability of optimality in-
stead of minimizing the expected cost), it is often capable of compensating this loss by
processing more samples than expectation, hereby improving the approximations of
the probability distributions.

While this result has been observed in many centralized stochastic optimization prob-
lems, it does not straightforwardly translate to the distributed setting of StochDCOPs.
The reason is that the expectation evaluation function is linear and commensurable,
but the consensus evaluation function is neither. As a consequence, the expectation
approach can be implemented efficiently using Exp-Local-E[DPOP], which is then
complete (modulo sampling). On the contrary, the consensus approach can only be
implemented using Cons-Central-E[DPOP], or a Cons/Exp- hybrid of Global- or Local-
E[DPOP] (Section 4.6.5), which are all incomplete algorithms (even without sampling),
and whose complexity is higher than that of Exp-Local-E[DPOP] (except for Cons/Exp-
Local-E[DPOP]). As a result, the intrinsic gap in solution quality that consensus has
to compensate for by processing more samples is much larger, and the complexity
advantage of consensus is smaller.

4.9 Experimental Results

This section presents empirical performance comparisons between the StochDCOP
algorithms described in this chapter, which were all implemented inside the FRODO
platform (Chapter 5). The experiments were run on a 2.2 GHz computer, with Java 6

144

4.9. Experimental Results

and 2 GB of heap space. To evaluate the runtime of our distributed algorithms, we
used two metrics that were proposed by the DCOP community: the simulated time
metric [Sultanik et al., 2007], and the number of Non-Concurrent Constraint Checks
(NCCCs) [Gershman et al., 2008]. When it comes to measuring performance in terms of
communication, we report the total amount of information exchanged by the agents, in
bytes. We could have also reported the total numbers of messages exchanged, however
all algorithms in this paper tend to exchange roughly the same numbers of messages,
so we do not report these results for the sake of conciseness. Finally, to compare the
qualities of the solutions output by the algorithms, we report the worst-case cost for
the algorithms using the robust evaluation function, and the expected cost for those
that use the expectation and consensus evaluation functions.

We report these results on three classes of problem benchmarks: graph coloring prob-
lems, Vehicle Routing Problems, and Kidney Exchange Problems . The first problem
class and its StochDCOP formulation were already presented in Section 4.2.1. We
generated random graphs of fixed density 0.4, varying the total number of nodes, while
maintaining the fraction of stochastic nodes to a constant value of 25%. The number of
colors was set to 3. Since Section 4.6.4 showed that the choice of the pseudo-tree could
have an influence on the solution quality of some algorithms, we investigated the use
of three pseudo-tree generation heuristics: the most connected heuristic (denoted by
the letter m), which tends to put high-degree variables higher in the pseudo-tree; the
opposite least connected heuristic (denoted by the letter l), and the random heuristic
(letter r). Each datapoint is the median over 101 random problem instances, with 95%
confidence intervals.

The second problem class is the new StochDKEP benchmark introduced in Sec-
tion 4.2.4. We produced random Kidney Exchange Problem instances of various sizes
using the real statistics of the U.S. population given by Saidman et al. [2006], except for
the vital prognosis: for each patient we used a probability of survival drawn from the
uniform distribution in [0, 1]. Before applying our StochDCOP algorithms, we enforced
arc consistency to simplify the problem.

The third class of benchmark problems is the stochastic vehicle routing class described
in Section 4.2.3. The benchmark problem instances we used for our experiments
were adapted from the Cordeau MDVRP instances from [Dorronsoro, 2007], adding
uncertainty in the positions of the customers that can be served by more than one
depot, using 4 uncertain positions with the probability distribution [1

10 ,
2
10 ,

3
10 ,

4
10].

Due to the larger runtimes (each VRP constraint check involves solving an NP-hard
problem), we only report the median over 11 runs.

145

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

4.9.1 Solution Quality/Complexity Tradeoff

This section reports the experimental results for the algorithms in terms of average or
worst-case solution cost, and in terms of runtime and communication complexity.

Graph Coloring Results

To illustrate the experimental results on graph coloring problems, we used the follow-
ing conventions. The line color corresponds to the evaluation function used by the
algorithm: Exp, Rob, Cons, or the Exp/Cons hybrid, following the naming conventions
introduced in Sections 4.1.2 and 4.6.5. The datapoint symbol varies with the reasoning
approach used (Comp, Local, Central or Global), and the line stroke stands for the
pseudo-tree generation heuristic (m, l or r).

Figure 4.11 shows the runtime performance for algorithms using the Exp, Cons and
Exp/Cons evaluation functions (lower is better); the winner is Exp-Local-E[DPOP] with
the most connected heuristic. Among the remaining algorithms, the parameter with the
highest impact on runtime is the choice of the heuristic: the most connected heuristic
always outperforms the random heuristic, which in turn always outperforms the least
connected heuristic, except in simulated time for very small problem instances. For
a given heuristic, Local outperforms Comp, which outperforms Global and Central,
the two latter performing the same. Figure 4.12 shows similar results for algorithms

4 8 12 16 20 24

Total number of nodes (25% stochastic)

101

102

103

104

105

106
Simulated time (in ms)

Cons-Central-(l)
Cons/Exp-Global-(l)
Cons/Exp-Local-(l)
Cons-Central-(r)
Cons/Exp-Global-(r)
Cons/Exp-Local-(r)
Cons-Central-(m)
Cons/Exp-Global-(m)
Cons/Exp-Comp-(m)
Exp-Comp-(m)
Cons/Exp-Local-(m)
Exp-Local-(m)

4 8 12 16 20 24

Total number of nodes (25% stochastic)

101

102

103

104

105

106

107

108

109

1010
Number of NCCCs

Cons-Central-(l)
Cons/Exp-Global-(l)
Cons/Exp-Local-(l)
Cons-Central-(r)
Cons/Exp-Global-(r)
Cons/Exp-Local-(r)
Cons-Central-(m)
Cons/Exp-Global-(m)
Cons/Exp-Comp-(m)
Exp-Comp-(m)
Cons/Exp-Local-(m)
Exp-Local-(m)

4 8 12 16 20 24

Total number of nodes (25% stochastic)

101

102

103

104

105

106
Simulated time (in ms)

Cons-Central-(l)
Cons/Exp-Global-(l)
Cons/Exp-Local-(l)

Cons-Central-(r)
Cons/Exp-Global-(r)
Cons/Exp-Local-(r)

Cons-Central-(m)
Cons/Exp-Global-(m)
Cons/Exp-Comp-(m)

Exp-Comp-(m)
Cons/Exp-Local-(m)
Exp-Local-(m)

Figure 4.11: Runtime on random graph coloring problems.

146

4.9. Experimental Results

4 8 12 16 20 24

Total number of nodes (25% stochastic)

101

102

103

104

105

106
Simulated time (in ms)

Rob-Central-(l)
Rob-Global-(l)
Rob-Local-(l)
Rob-Central-(r)
Rob-Global-(r)
Rob-Local-(r)
Rob-Central-(m)
Rob-Global-(m)
Rob-Comp-(m)
Rob-Local-(m)

4 8 12 16 20 24

Total number of nodes (25% stochastic)

100

101

102

103

104

105

106

107

108

109

1010
Number of NCCCs

Rob-Central-(l)
Rob-Global-(l)
Rob-Local-(l)
Rob-Central-(r)
Rob-Global-(r)
Rob-Local-(r)
Rob-Central-(m)
Rob-Global-(m)
Rob-Comp-(m)
Rob-Local-(m)

4 8 12 16 20 24

Total number of nodes (25% stochastic)

101

102

103

104

105

106
Simulated time (in ms)

Rob-Central-(l)
Rob-Global-(l)
Rob-Local-(l)

Rob-Central-(r)
Rob-Global-(r)
Rob-Local-(r)

Rob-Central-(m)
Rob-Global-(m)

Rob-Local-(m)
Rob-Comp-(m)

Figure 4.12: Runtime on random graph coloring problems.

4 8 12 16 20 24

Total number of nodes (25% stochastic)

103

104

105

106

107

108

109
Information exchanged (in bytes)

Central-(l)
Global-(l)
Local-(l)
Central-(r)
Global-(r)
Local-(r)
Central-(m)
Global-(m)
Comp-(m)
Local-(m)

Figure 4.13: Amount of information exchanged on graph coloring problems.

using the Rob evaluation function; the difference with Figure 4.11 is that the choice of
the reasoning approach seems to have an equally important influence as the heuristic.
The fastest algorithm remains the one that reasons locally, using the most connected
heuristic. The performance results in terms of information exchanged (which does not
depend on the evaluation function) in Figure 4.13 are consistent.

147

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

4 8 12 16 20 24

Total number of nodes (25% stochastic)

0.00

0.05

0.10

0.15

0.20

0.25

Distance to expected optimum

Cons-Central-(m)
Cons/Exp-Global-(m)
Cons/Exp-Local-(m)

Figure 4.14: Optimality gap for Cons and Cons/Exp on graph coloring problems.

When it comes to solution quality, Figure 4.14 reports the distance from the optimal
solution (computed by Exp-Local-E[DPOP]) for various algorithms using the Cons
and Cons/Exp evaluation functions, as a function of the reasoning approach used
(Central, Global or Local), for a given pseudo-tree generation heuristic (the most
connected heuristic). Surprisingly, one can see that the solution quality degrades as the
agents exchange more information about their respective dependencies on random
variables: Local outperforms Global, which outperforms Central. While this may
seem counter-intuitive, this phenomenon can be explained as follows. It is probably
the case that exchanging more information about uncertainty enables the agents to
make better-informed decisions; however, the resulting potential increase in solution
quality does not compensate a second, adversarial factor, which is the accumulation of
approximation errors. Every time an agent applies the consensus evaluation function in
order to choose a value for its variable, it performs an approximation, since it chooses
the value that has the highest probability of optimality, instead of the one that has
the lowest expected cost. The higher in the pseudo-tree random variables are finally
projected out, the more agents need to apply the consensus evaluation function, and
the more the solution quality degrades. In the Local approach, for a given random
variable r, only the agents responsible for enforcing a constraint involving r apply the
operator Pr. At the other extreme, in the Central approach, the root variable must
apply the consensus evaluation function for all random variables in the problem. This
can explain why Cons/Exp-Local-E[DPOP] produces better solutions than Cons/Exp-
Global-E[DPOP], which itself produces better solutions than Cons-Central-E[DPOP].
The sudden decrease in the optimality gap for the latter algorithm on problems of
size 20 can be explained by the fact that the algorithm started to often time out,
and when it did, we were not able to compute its solution quality, so we did not

148

4.9. Experimental Results

consider the timeout instances in the computation of the median, which ends up
being biased downwards. We have also measured the differences in solution quality
between the various pseudo-tree generation heuristics, but they turned out to be
statistically insignificant.

4 8 12 16 20 24

Total number of nodes (25% stochastic)

0.0

0.5

1.0

1.5

2.0

Distance to worst-case optimum

Rob-Local-(l)
Rob-Local-(r)
Rob-Local-(m)
Rob-Global-(l)
Rob-Global-(r)
Rob-Global-(m)

Figure 4.15: Optimality gap for Rob-E[DPOP] on graph coloring problems.

Figure 4.15 shows that, when using the robust evaluation function, the tradeoff between
the loss in solution quality due to approximations and the gain due to coordination
is reversed. While, for small problems, all versions of Rob-E[DPOP] perform equally
well (their distance from Rob-Comp-E[DPOP]’s optimal solution is zero), for larger
problems, the performance of Rob-Local-E[DPOP] starts to degrade, while Rob-Global-
E[DPOP] is still able to produce optimal solutions more than 50% of the time (until
it starts timing out most of the time above 20 nodes). This shows that, in this case,
exchanging more information about uncertainty does yield higher-quality solutions.
Notice also that the choice of the pseudo-tree generation heuristic does not seem to
have any influence on solution quality.

Distributed Kidney Exchange

Recall from Section 4.7.1 that Theorem 18 applies to the StochDKEP problem class,
and from Theorem 19 it further follows that all Rob-E[DPOP] algorithms will produce
the same solutions to the StochDKEP, and it does not make sense to compare them in
terms of solution quality. In fact, all possible solutions to the StochDKEP always have
the same worst-case cost of 0 (when all patients die).

We only report in Figure 4.16 the median (over 151 runs) of the average-case optimality
gap for Cons- and Cons/Exp-E[DPOP] with respect to the optimal solution computed

149

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

4 6 8 10 12

Number of patient-donor pairs

0

1

2

3

4

Distance to expected optimum

Cons-Central-(m)
Cons/Exp-Global-(m)
Cons/Exp-Local-(m)

Figure 4.16: Optimality gap for Cons and Cons/Exp on kidney exchange problems.

by Exp-E[DPOP]. It appears that, in this problem class, like for graph coloring, propa-
gating the information about the dependencies on all random variables all the way to
the root of the pseudo-tree (as in Cons-Central-E[DPOP]) degrades the solution quality.
However, unlike for graph coloring, Cons/Exp-Global- and Cons/Exp-Local-E[DPOP]

have a median optimality gap of 0, which means that most of the time there are able to
find the optimal solution.

VRP Results

Table 4.5 reports the solution quality and the performance of various algorithms on
stochastic VRP benchmarks. H is the visibility horizon, and Qmax is the vehicle capac-
ity; the runtime is in seconds, the NCCCs in thousands, the information exchanged
in kB, and the probability of optimality P[c] is in %. It is worth mentioning that, when
counting constraint checks towards the computation of the NCCC metric, only the
VRP constraint checks were counted, since checking the other sum constraints in-
volves a negligible amount of computation in comparison. When the robust evaluation
function is used, the Local- approach is always the fastest (both in terms of runtime
and NCCCs), and it is also the one that exchanges the least amount of information.
Furthermore, even though the Local- approach is not guaranteed to find the optimal
solution, empirically it almost always does.

When it comes to algorithms using the expectation or the consensus/expectation evalu-
ation functions (Table 4.5, bottom), two remarkable observations can be made. First,
when using the Cons/Exp hybrid, while it is still the case that the Comp- approach has
the highest complexity, it is no longer the case that the Local- approach systemati-

150

4.9. Experimental Results

Ta
b

le
4.

5:
So

lu
ti

o
n

q
u

al
it

y
an

d
p

er
fo

rm
an

ce
o

n
V

R
P

b
en

ch
m

ar
ks

.

#
in

st
.

H
Q

m
a
x

R
o

b
-L

o
ca

l-
E[

D
P

O
P

]
R

o
b

-G
lo

b
al

-E
[D

P
O

P
]

R
o

b
-C

o
m

p
-E

[D
P

O
P

]
m

in
c

ti
m

e
N

C
C

C
in

fo
m

in
c

ti
m

e
N

C
C

C
in

fo
m

in
c

ti
m

e
N

C
C

C
in

fo

1

p
04

18
.1

61
46

5.
8

57
.3

74
.0

5.
9

46
5.

8
59

.1
78

.6
38

.0
46

5.
8

82
.5

13
9.

3
37

.0
2

62
47

6.
9

57
.2

74
.0

5.
9

47
4.

8
59

.0
78

.6
38

.0
47

4.
8

82
.8

13
9.

3
37

.0
3

63
47

4.
9

57
.3

74
.0

5.
9

47
4.

9
58

.7
78

.6
38

.0
47

4.
9

82
.6

13
9.

3
37

.0
4

64
45

5.
3

57
.4

74
.0

5.
9

45
5.

3
59

.2
78

.6
38

.0
45

5.
3

82
.7

13
9.

3
37

.0
5

65
44

6.
3

57
.7

74
.0

5.
9

44
6.

3
59

.3
78

.6
38

.0
44

6.
3

83
.3

13
9.

3
37

.0
6

66
45

3.
3

57
.8

74
.0

5.
9

45
3.

3
59

.6
78

.6
38

.0
45

3.
3

83
.3

13
9.

3
37

.0
7

p
08

55
49

0
18

15
.2

12
3.

3
33

.6
6.

1
18

15
.2

13
3.

9
38

.7
41

.5
18

15
.2

17
7.

9
57

.6
16

.9
8

49
4

18
15

.2
12

1.
8

33
.6

6.
1

18
15

.2
13

3.
6

38
.7

41
.5

18
15

.2
17

9.
6

57
.6

16
.9

9
49

8
17

40
.0

12
1.

4
33

.6
6.

1
17

40
.0

13
2.

5
38

.7
41

.5
17

40
.0

18
0.

7
57

.6
16

.9
10

p
11

26
14

0
46

6.
3

58
.7

49
5.

2
13

.5
46

0.
9

63
.6

51
5.

6
15

4.
8

46
0.

9
15

8.
5

95
6.

4
24

3.
8

11
14

4
44

5.
2

59
.2

49
9.

2
13

.5
44

5.
2

63
.9

51
9.

6
15

4.
8

44
5.

2
15

8.
7

96
0.

0
24

3.
8

#
C

o
n

s/
E

xp
-L

o
ca

l-
E[

D
P

O
P
]

C
o

n
s/

E
xp

-G
lo

b
al

-E
[D

P
O

P
]

C
o

n
s/

E
xp

-C
o

m
p

-E
[D

P
O

P
]

E
xp

-L
o

ca
l-
E[

D
P

O
P
]

E
[c
]

P[
c]

ti
m

e
N

C
C

C
E
[c
]

P[
c]

ti
m

e
N

C
C

C
E
[c
]

P[
c]

ti
m

e
N

C
C

C
E
[c
]

P[
c]

ti
m

e
N

C
C

C

1
46

5.
15

40
48

.9
64

.7
46

5.
15

40
50

.1
66

.3
46

5.
15

40
13

5.
1

24
8.

1
46

5.
15

40
57

.5
74

.0
2

47
2.

49
0

50
.2

66
.4

47
2.

49
0

49
.1

64
.7

47
2.

49
0

13
8.

2
24

8.
1

47
2.

49
0

58
.1

74
.0

3
47

1.
25

0
51

.9
68

.6
47

1.
25

0
50

.8
67

.2
47

1.
25

0
13

5.
1

24
8.

1
47

1.
25

0
57

.7
74

.0
4

45
3.

63
50

49
.5

65
.2

45
3.

63
50

49
.3

65
.3

45
3.

63
50

13
6.

3
24

8.
1

45
3.

63
50

57
.7

74
.0

5
44

5.
28

80
49

.0
64

.4
44

5.
28

80
48

.6
64

.1
44

5.
28

80
13

6.
4

24
8.

1
44

5.
28

80
57

.6
74

.0
6

45
2.

17
0

49
.6

64
.9

45
2.

17
0

50
.9

66
.9

45
2.

1
0

13
5.

3
24

8.
1

45
2.

1
0

58
.1

74
.0

7
17

89
.9

3
0

62
.0

19
.0

17
89

.9
3

0
59

.3
18

.4
17

89
.9

3
0

31
0.

7
10

2.
6

17
89

.9
3

0
12

1.
7

33
.6

8
17

90
.4

3
20

64
.9

19
.9

17
90

.4
3

20
60

.8
18

.5
17

89
.9

3
0

30
9.

4
10

2.
6

17
89

.9
3

0
12

0.
8

33
.6

9
17

35
.9

5
10

11
1.

4
32

.2
17

35
.9

5
10

11
1.

8
32

.3
17

35
.9

5
10

31
0.

4
10

2.
6

17
35

.9
5

10
12

0.
9

33
.6

10
45

4.
95

17
54

.4
44

2.
8

45
4.

95
17

53
.8

43
9.

6
45

4.
95

17
27

7.
8

17
03

.7
45

4.
95

17
58

.9
49

5.
1

11
43

6.
67

38
57

.2
47

1.
8

43
6.

67
38

56
.8

46
4.

2
43

6.
67

38
28

1.
0

17
10

.0
43

6.
67

38
59

.7
49

9.
2

151

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

cally outruns the Global- approach: the two approaches appear to have roughly the
same complexity. This phenomenon can be explained as follows: the only difference
between Cons/Exp-Local-E[DPOP] and Cons/Exp-Global-E[DPOP] is that the former
has agents report their expected costs to their parents (independently of the random
variables), while in the latter agents report their effective costs (as functions of the
random variables). The two approaches have roughly the same runtime complexity
because computing the expected costs requires computing the effective costs, and
only involves additional computations (weighted sums) that are negligible compared
to the computational bottleneck of checking the VRP constraints. This phenomenon
is not present when using the robust evaluation function (Table 4.5, top), because
computing the worst-case costs (independently of the random variables) comes for
free as a side-effect of computing the optimal values to the variables, and does not
require computing the effective costs as functions of the random variables.

The second remarkable observation is that we were able to reproduce the following
result that was known in the centralized setting [Bent and van Hentenryck, 2004]:
when constraint checks are expensive, and the goal is to minimize the expected cost
of the solution, it can make sense to maximize the probability of optimality instead,
because it requires fewer constraint checks. In other words, on our stochastic VRP
benchmarks, the Cons/Exp-Local-E[DPOP] and Cons/Exp-Global-E[DPOP] algorithms
always outrun Exp-Local-E[DPOP], while still most often producing the same optimal
solution with minimal expected cost.

4.9.2 Partial Centralization and Privacy Loss

As already discussed in Sections 4.3.3 and 4.4.4, the Comp- approach based on vir-
tual agents has the disadvantage of centralizing all the information about each given
random variable into one virtual agent, which has to be simulated by one of the real
agents. In this section, we experimentally quantify this phenomenon, by introducing a
new metric for information centralization in DCOPs and StochDCOPs.

We first define the amount of information in a given constraint as its number of tuples,
i.e. the product of the domains of the variables in its scope. We then compute the
baseline knowledge of each agent as the total amount of information in all constraints
involving its variables. Our measure of the level of centralization corresponds to the
total amount of information that must be known to the most knowledgeable agent,
re-scaled such that 100% corresponds to the case when the most knowledgeable agent
must know all constraints, and 0% corresponds to the baseline in which each agent
only needs to know the constraints over its variables. The Local- and Global- approach
have a level of centralization of 0%. One the contrary, the Comp- approach may have a
non-zero level of centralization, because the agent that simulates the virtual agent for
a given random variable r must know all constraints involving r, even if they do not

152

4.9. Experimental Results

4 8 12 16 20 24

Total number of nodes (25% stochastic)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Level of centralization

Comp-(m)

Figure 4.17: Level of centralization of Comp-E[DPOP] on graph coloring problems.

involve any of its decision variables.

For our graph coloring benchmarks, it turns out that the centralization performed
by the Comp- approach remains minimal, as can be seen in Figure 4.17: the median
level of centralization always remains below 6%, with 95% confidence. On the other
hand, the results for the VRP benchmarks were completely different, with the Comp-
approach systematically centralizing 100% of the problem knowledge into one single
agent. This can be explained by the fact that all VRP instances we have used involve
only two depots, and therefore all agents’ subproblems depend on all random variables.

4.9.3 Effects of Sampling

To study the effects of sampling on the solution quality for graph coloring problems,
we fixed the total number of nodes to 16, we increased the number of colors to 4,
and we varied the number k of samples per random variable. Figure 4.18 reports
the distance from the optimal solution (lower is better) computed by Exp-E[DPOP]

(without sampling), when using the Exp- and Cons/Exp- approaches. As a baseline, we
also report the optimality gap of the traditional DPOP algorithm, ignoring all random
variables and all constraints involving random variables. Due to the increased variance
introduced by the sampling mechanism, for these results we have computed the
median over a larger number of runs (200 instead of 100 previously).

Three observations can be made. First, E[DPOP] always performs at least as good as
DPOP, and significantly better for k > 1. This is a reassuring indication that reasoning
about uncertainty in any way always produces higher solution qualities than ignoring

153

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

1 2 3 4

Number of samples / random variable

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Distance to expected optimum

Exp-Simple-(m)
Exp-Local-(m)
DPOP

1 2 3 4

Number of samples / random variable

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Distance to expected optimum

Cons/Exp-Simple-(m)
Cons/Exp-Local-(m)
DPOP

1 2 3 4

Number of samples / random variable

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Distance to expected optimum

Exp-Simple-(m)
Exp-Local-(m)

Cons/Exp-Simple-(m)
Cons/Exp-Local-(m)

DPOP

Figure 4.18: Solution quality convergence with the number of samples.

uncertainty. Second, one can see that the solution quality also improves with the
number of samples; this is expected, since using more samples allows the agents to
consider a larger part of the uncertainty space.

The third, and most important observation relates to the relative performances of
independent sampling (referred to as Simple-E[DPOP] in this graph) and of collabo-
rative sampling. While, for low numbers of samples, the difference is not statistically
significant, for higher numbers of samples, collaborative sampling clearly outperforms
independent sampling. This means that, when the agents want to minimize the ex-
pected cost, they can produce higher-quality solutions by reasoning on the same,
consistent lists of samples for the random variables.

The results in Figure 4.19 are totally different, when performing robust optimization
instead of average-case optimization. A first, surprising observation is that DPOP (the
flat line at cost = 1.0) always performs at least as good as Rob-Local-E[DPOP]. This is,
in fact, an artifact of the problem class, and can be explained intuitively as follows. By
ignoring all uncontrollable nodes, DPOP only makes sure that neighboring agents take
different colors, regardless of their neighboring uncontrollable nodes. On the contrary,
due to sampling, E[DPOP] may incorrectly think that it can be more beneficial for two
neighboring agents to take the same color, if this color appears risk-free because it has
not been sampled as part of the possible colors for the neighboring uncontrollable
nodes. To illustrate this, consider a simple problem instance involving two neighboring

154

4.9. Experimental Results

1 2 3 4

Number of samples / random variable

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Distance to worst-case optimum

Rob-Local-(m)
Rob-Simple-(m)
DPOP

Figure 4.19: Solution quality convergence with the number of samples.

agents x and y, which are both neighbors of an uncontrollable node r. DPOP will make
sure that x 6= y, and therefore the worst case is when r takes the same color as one
of the two agents, in which case only one constraint is violated. On the contrary,
in Rob-E[DPOP], since the agents are (under-)sampling the possible colors for the
uncontrollable node, it is possible that they both assume that it cannot take the color
blue. Therefore, Rob-E[DPOP] may choose the solution x = y = B, because it thinks
that the corresponding worst-case cost is 1, while in fact it is 3 (x = y = B = r). Notice
however that it is still more beneficial to reason about uncertainty than to totally ignore
it, since DPOP’s solution remains sub-optimal: its worst-case cost is greater by 1 than
the optimal worst-case cost computed by Rob-Comp-E[DPOP] (without sampling).

The second, very interesting observation is that independent sampling (denoted
Simple-E[DPOP]) now outperforms collaborative sampling when k < 4, i.e. the num-
ber of samples per random variable is too low to cover the entire domain of the random
variable. A possible intuition behind this result is that, when performing robust op-
timization, it is crucial for the agents to have the most complete view as possible of
the uncertainty space, otherwise they can take sub-optimal decisions based on the
incorrect assumption that one particular scenario cannot occur (as discussed in the
previous paragraph). As a result, it is more beneficial for the agents to independently
sample the uncertainty space, since together they will be able to explore more of it
than if they coordinate to only consider consistent samples. This phenomenon is not
observed in the case of average-case optimization, probably because, in that case, it is
actually more crucial for the agents to accurately and consistently estimate the most
probable scenarios, than to explore more improbable ones.

155

Chapter 4. StochDCOP: DCOP under Stochastic Uncertainty

4.10 Summary

In this chapter, we have introduced the new formalism of Distributed Constraint Op-
timization under Stochastic Uncertainty (StochDCOP), which is an extension of the
classical DCOP framework in which random variables are used to model sources of
uncertainty with known probability distributions. A solution to the StochDCOP is an
assignment to the decision variables only; the random variables are uncontrollable,
and correspond to future uncertain events that the agents must anticipate. Therefore,
the effective quality of a solution to the StochDCOP actually depends on the values of
these random variables; in order to summarize the quality of a solution into a single cri-
terion, we have also introduced the notion of evaluation function that corresponds to
the agents’ method of anticipation of the uncertainty. The expectation evaluation func-
tion corresponds to maximizing the expected solution quality, the robust evaluation
function to maximizing the worst-case solution quality, and we have also considered
the consensus evaluation function, which maximizes the probability of optimality. We
have illustrated this new StochDCOP framework on various application domains, and
compared it with previous work on uncertainty in DCOP.

In order to address StochDCOPs, we have proposed three main techniques, which,
applied to the DPOP algorithm, give rise to a family of algorithms that we call E[DPOP].
In the complete approach (Comp-E[DPOP]), which we derived from related work
on QDCOPs, the responsibility for reasoning about each source of uncertainty is
centralized at one specific, virtual agent. We have also investigated the possibility
for agents to reason locally about uncertainty, but still exchange to various extents
information about their respective dependencies on random variables. In the local
approach (Local-E[DPOP]), this exchange is inexistent, and the agents just blindly
resolve the uncertainty locally, ignoring the fact that other agents may depend on
the same sources of uncertainty. In the global approach (Global-E[DPOP], the agents
propagate up the pseudo-tree the information about their dependencies on each
random variable, until the lowest common ancestor of all decision variables that
depend on this random variable. We have also investigated the sampling techniques
that can be used to scale to larger problems in which the uncertainty space is too large
to be exhaustively explored.

In the introduction to this thesis, we have raised two research questions, which we
have addressed in this chapter. The first question was based on the observation that
each source of uncertainty often only has a limited, local influence on the agents, and
asked whether this property could be exploited to produce more efficient algorithms.
Exploiting the locality of uncertainty is precisely what is done in Local- and Global-
E[DPOP], compared to the Comp-E[DPOP] approach that centralizes the reasoning
about uncertainty. Our experimental results on various benchmark problem classes
have shown that the two former approaches indeed provide significant performance
improvements compared to the latter. However, in some circumstances, these perfor-

156

4.10. Summary

mance improvements may come to a price in terms of solution quality, as Local- and
Global-E[DPOP] are not always complete. We have analyzed theoretically the cases
in which completeness is still guaranteed, which is the case in many settings, such
as when using the expectation evaluation function, and, in certain special conditions,
also when using the robust evaluation function. We have also observed empirically
that, even in the cases when they are not guaranteed to find the optimal solution,
these two algorithms most often do. Additionally, they do not suffer from the loss of
privacy that is inherent to Comp-E[DPOP]’s approach of centralizing the reasoning
about uncertainty. Furthermore, when the goal is to maximize the expected solution
quality, we have shown that it can be beneficial to use the consensus evaluation func-
tion instead, i.e. to maximize the probability of optimality, because this technique can
be computationally less expensive and can empirically provide good solution qualities.

The second question was inspired by the fact that multiple agents may depend in
different ways on common random variables, and asked whether discovering and
exchanging information about such co-dependencies could help the agents make
better-informed decisions, yielding solutions of higher quality. In this chapter, we have
explored two ways in which agents could exchange such information: by propagating
it up the pseudo-tree as previously mentioned, and by coordinating on the choice
of consistent samples for the random variables, when sampling is used to address
large uncertainty spaces. Our experimental results demonstrated that the pros and
cons of such information exchange depend on the evaluation function used. We
have shown that, when using the expectation evaluation function, propagating more
information up the pseudo-tree could provably not improve solution quality, and could
only lead to a decrease in runtime and communication performance. When using
the consensus evaluation function, if this information exchange is propagated too
high up the pseudo-tree, it can even additionally lead to a decrease in solution quality.
However, when using the robust evaluation function, exchanging more information
about the cross-dependencies on random variables empirically does help the agents
make better-informed decisions. When it comes to coordinating on the choice of
samples, we have shown that collaborative sampling is indeed beneficial in the context
of average-case optimization; however, when performing robust optimization, higher
solution qualities can be achieved by simply performing independent sampling.

157

5 The FRODO 2 Platform

All the algorithms described in this thesis were implemented, tested, and experimented
with in the FRODO 2 platform1 for DisCSP, DCOP and StochDCOP. This piece of Java
software is a complete re-design of the original FRODO platform developed by Petcu
[2006], of which it only retained the name. The new design was performed in collab-
oration with Brammert Ottens and Radoslaw Szymanek, and it was implemented by
myself, Brammert Ottens, and multiple students whose semester projects the two of
us supervised; a partial list of contributors is provided in Section 5.3.

Some of the motivations for this re-design effort were the following. First, we wanted a
platform that was easily maintainable and extendable, as well as clearly documented.
To address this, FRODO 2 was designed from the ground up with modularity in mind,
and based on high standards in terms of documentation, forcing ourselves to write
Doxygen documentation for every single class, method, and attribute, be they public
or private.

Second, we wanted a platform that was highly reliable. This was also achieved by
imposing high requirements upon ourselves, through the extensive and systematic
use of JUnit tests to check each new piece of code as it was being developed. The
RepeatedTest feature of JUnit was used to run each type of test multiple times on
randomized inputs. At the time of this writing, FRODO includes:

• 8’500+ randomized tests for the communications layer;

• 100’000+ randomized tests for the solution spaces layer;

• 450’000+ randomized tests for the algorithms layer.

Third, we wanted to use a rich, structured file format to express DisCSPs and DCOPs. At
the time, very few decent file formats had been proposed for (centralized) Constraint

1FRODO stands for FRamework for Open and Distributed Optimization

159

Chapter 5. The FRODO 2 Platform

Satisfaction Problems (CSPs), let alone for distributed CSPs and distributed optimiza-
tion problems. The most natural choice was the XCSP file format [2008], which we
decided to extend and adopt for use in FRODO 2. Being an XML-based format, JDOM
[2009] was chosen as a simple-to-use parsing library, and a full-fledge XML Schema
was developed for XCSP, which did not exist before. More recently, with the release of
the DisCHOCO 2 platform [Wahbi et al., 2011], which also uses a (then slightly different)
extension of the XCSP format, we adapted FRODO’s format to make it compatible with
the one used by DisCHOCO 2. This made it possible to use DisCHOCO 2’s problem
generators to produce benchmark instances for FRODO.

FRODO currently represents about 100’000 lines of code. In order to allow the entire
research community to benefit from this significant implementation effort, FRODO’s
source code has been released to the public under the Affero GPL license. Our hope
was that we would get constructive feedback in return from external users; at the time
of this writing, we have even received code contributions to FRODO from two different
external developers.

5.1 Architecture

This section describes the multi-layer, modular architecture chosen for FRODO. The
three layers are illustrated in Figure 5.1; we describe each layer in some more detail in
the following subsections.

Communications Layer

Solution Spaces Layer

Algorithms Layer

FRODO

Figure 5.1: General FRODO software architecture.

5.1.1 Communications Layer

The communications layer is responsible for passing messages between agents. At
the core of this layer is the Queue class, which is an elaborate implementation of a
message queue. Queues can exchange messages with each other (via shared memory
if the queues run in the same JVM, or through TCP otherwise), in the form of Message
objects. Classes implementing IncomingMsgPolicyInterface can register to a queue
in order to be notified whenever messages of specific types are received. Such classes

160

5.1. Architecture

can be called policies because they decide what to do upon reception of certain types
of messages.

Typically, in FRODO each agent owns one queue, which it uses to receive and send
messages. Each queue has its own thread, which makes FRODO a multi-threaded
framework. Special care has been put into avoiding threads busy waiting for messages,
in order to limit the performance implications of having one thread per agent, in
experiments where a large number of agents run in the same JVM.

5.1.2 Solution Spaces Layer

FRODO is a platform designed to solve distributed combinatorial optimization prob-
lems; the solution spaces layer provides classes that can be used to model such prob-
lems. Given a space of possible assignments to some variables, a solution space is a
representation of assignments of special interest, such as assignments that correspond
to solutions of a given problem. Intuitively, one can think of a solution space as a
constraint or a set of constraints that describes a subspace of solutions to a problem.

In the context of optimization problems, utility solution spaces are used in order to
describe solutions spaces in which each solution is associated with a utility. Alterna-
tively, the utility can be seen as a cost, if the objective of the problem is to minimize
cost rather than maximize utility.

In order to reason on (utility) solution spaces, FRODO implements operations on these
spaces. Examples of operations are the following:

• join merges two or more solutions spaces into one, which contains all the solu-
tions in the input spaces;

• project operates on a utility solution space, and removes one or more variables
from the space by optimizing over their values in order to maximize utility or
minimize cost;

FRODO provides several implementations of utility solution spaces; the implemen-
tation used to solve a given DCOP depends on the problem parser that is passed to
FRODO as an argument. The XCSPparser converts the DCOP problem file into hyper-
cubes; the special XCSPparserVRP is additionally able to output VRP spaces. Finally, it
is also possible to use the XCSPparserJaCoP, which outputs JaCoP spaces that serve as
bridges between FRODO and the centralized solver JaCoP [2011].

161

Chapter 5. The FRODO 2 Platform

Hypercubes

The simplest implementation of a solution space is the hypercube. A hypercube is
an extensional representation of a space in which each combination of assignments
to variables is associated with a given utility (or cost). Infeasible assignments can
be represented using a special infinite utility/cost. In many cases, operations on
hypercubes can be implemented so as to output an intensional space rather than
explicitly compute the output space in extension. For example, the join method returns
a JoinOutputHypercube object that is simply a wrapper around the inputs to the join,
to save memory. The solution space is only made extensional (i.e. converted into a
hypercube) if it is used by agents to exchange information about their subproblems,
such as in the UTIL messages sent by DPOP.

VRP Spaces

To address distributed Vehicle Routing Problems (VRPs), FRODO also provides an
implementation of a specialized intensional space representing a (single-depot) VRP
constraint (Section 2.2.4). The variables in the space’s scope correspond to whether
or not the depot serves a given customer (in the non-split delivery variant), or to how
much of the customer’s demand is assigned to the depot (in the split delivery variant).
To any possible assignment to its variable, the space associates the cost (i.e. the length)
of the optimal delivery route to serve the customers. Computing the optimal route
involves solving a VRP instance, which FRODO performs by calling the third-party
library OR-Objects [2010].

JaCoP Spaces

JaCoP spaces are special spaces whose constraints are instantiated inside an instance
of the JaCoP solver. Whenever operations need to be performed on such as space,
it internally calls JaCoP to efficiently perform them. This makes it possible to han-
dle structured, intensional constraints more efficiently than if they were expressed
extensionally as hypercubes, and also makes it possible to leverage the powerful propa-
gation and reasoning algorithms provided by JaCoP, especially when it comes to global
constraints. At the moment of this writing, FRODO version 2.9 supports the following
constraints thanks to JaCoP, in addition to the traditional, extensional soft constraints:

• extensional hard constraints,

• predicate-based hard constraints,

• weighted sum constraints,

• all-different constraints.

162

5.1. Architecture

5.1.3 Algorithms Layer

The algorithms layer builds upon the solution spaces layer and the communication
layer in order to provide distributed algorithms to solve DCOPs. In FRODO, an algo-
rithm is implemented as one or more modules, which are simply policies that describe
what should be done upon the reception of such or such message by an agent’s queue,
and what messages should be sent to other agents, or to another of the agent’s modules.
This modular design makes algorithms highly and easily customizable, and facilitates
code reuse, simplicity, and maintenance.

FRODO currently supports the following algorithms:

DCOP algorithms:

• Complete algorithms:

– SynchBB [Hirayama and Yokoo, 1997],

– ADOPT [Modi et al., 2005],

– DPOP [Petcu and Faltings, 2005b], and the following variants:

* S-DPOP [Petcu and Faltings, 2005d],

* O-DPOP [Petcu and Faltings, 2006],

* ASO-DPOP [Ottens and Faltings, 2008],

* Our own privacy-aware algorithms:

· P-DPOP [Faltings et al., 2008],

· P2-DPOP [Léauté and Faltings, 2009b],

· P3/2-DPOP [Léauté and Faltings, 2011a],

– MPC-DisWCSP4 [Silaghi and Mitra, 2004; Silaghi, 2005a], which we used as
a baseline for comparison with our P∗-DPOP algorithms,

– AFB [Gershman et al., 2006],

• Incomplete algorithms:

– MGM and MGM-2 [Maheswaran et al., 2004a],

– DSA [Zhang et al., 2005],

StochDCOP algorithms:

• Our own family of E[DPOP] algorithms [Léauté and Faltings, 2011b],

• Our own (unpublished) Param-DPOP, which computes a optimal solution as a
function of the random variables,

163

Chapter 5. The FRODO 2 Platform

Pure DisCSP algorithms:

• MPC-DisCSP4 [Silaghi, 2005a], which we used as a baseline for comparison with
our P∗-DPOP algorithms.

To illustrate FRODO’s modular philosophy, let us consider the implementation of the
DPOP algorithm. A DPOP agent uses a single queue, and is based on the generic,
algorithm-independent SingleQueueAgent class. The behavior of this generic agent
is specialized by plugging in four modules, which correspond to DPOP’s four phases.
Alternatively, the first two phases can be replaced by the new, integrated pseudo-tree
generation algorithm described in Section 4.4.2.

1. The Variable Election module describes how the agent should exchange messages
with its neighboring agents in order to collectively elect one variable of the
overall problem. This corresponds to the naive variable election algorithm in
Section 3.3.2.

2. The DFS Generation module has the agents exchange tokens so as to order all
variables in the DCOP along a pseudo-tree, rooted at the variable elected by the
Variable Election module, and following the algorithm in Section 2.4.2.

3. The UTIL Propagation module implements DPOP’s traditional UTIL propagation
phase (Section 2.4.4), during which hypercubes describing solutions to increas-
ingly large subproblems are aggregated and propagated along the DFS tree in a
bottom-up fashion, starting at the leaves of the tree.

4. The VALUE Propagation module corresponds to DPOP’s VALUE propagation
phase (Section 2.4.4), which is a top-down propagation of messages containing
optimal assignments to variables.

This modular algorithm design makes it easy to implement various versions of DPOP,
either by parametrizing one or more modules to make them behave slightly differently,
or by completely replacing one or more modules by new modules to implement various
behaviors of the agents.

5.2 Features

This section describes the remaining features of FRODO not already mentioned in
the previous sections, and in whose implementation I was personally involved. For a
full list of FRODO’s features (including, for instance, the ability to run the platform on
multiple machines) and their descriptions, please refer to the user manual.

164

5.2. Features

5.2.1 Performance Metrics

FRODO supports the following performance metrics:

Number of Messages and Amount of Information Sent If told to do so, FRODO can
compute and report the total number of messages sent, sorted by message type,
as well as the total sum of the sizes of all messages sent, also sorted by message
type. Note that this can be computationally expensive, as measuring message
sizes involves serialization.

Simulated Time By default, FRODO uses a centralized mailman to ensure that mes-
sages are delivered sequentially one at a time, in increasing order of their time
stamps; this makes it possible to compute the runtime of the algorithm in simu-
lated time [Sultanik et al., 2007]. If this feature is disabled, then each agent gets its
own thread, and messages get delivered completely asynchronously; timing mea-
surements can then only be valid if the computer on which FRODO is running is
such that each agent gets a dedicated processor/core.

Non-Concurrent Constraint Checks (NCCCs) If an implementation-independent mea-
surement of runtime is preferred to the simulated time metric, FRODO also sup-
ports the logical-step-based NCCC metric [Gershman et al., 2008], which counts
the length (in number of constraint checks, which are assumed atomic) of the
longest, non-concurrent execution path of the algorithm.

Other Statistics Several algorithmic modules can also report other statistical infor-
mation about the problem. For instance, in the case of DPOP and ADOPT, the
DFS Generation module can report the DFS tree that was generated, in DOT
format [Graphviz, 2011], while the VALUE Propagation module can report the
optimal assignments to the DCOP variables and the corresponding total utility.

5.2.2 Graphical User Interface

FRODO comes with a limited graphical user interface; a screen capture of the main
window is illustrated in Figure 5.2. This window allows the user to input a problem
file in XCSP format, to choose an algorithm from the drop-down menu of supported
algorithms (or to input a custom algorithm configuration file), and to specify a timeout.
Of most use is probably the Render button, which brings up a new window displaying
the constraint graph of the input problem, as shown in Figure 5.3 (left). This function-
ality is provided through the third-party utility Graphviz [2011]. In a similar manner,
FRODO can also display the pseudo-tree used by DPOP or ADOPT (Figure 5.3, right).

165

Chapter 5. The FRODO 2 Platform

Figure 5.2: FRODO’s main GUI window.

Figure 5.3: FRODO’s auxiliary GUI windows.

5.2.3 Websites

FRODO’s official website is currently hosted at the LIA, and is accessible at the following
address: http://liawww.epfl.ch/frodo/. This website was developed using the Content
Management System Joomla! [2011], and provides announcements of new releases,
download links, as well as an HTML version of the user manual (also available in PDF),

166

http://liawww.epfl.ch/frodo/

5.3. Contributors

and a thorough and systematic documentation of the API, generated using Doxygen
[2011].

A SourceForge page has also been setup: https://sourceforge.net/projects/frodo2/.
SourceForge provides collaboration tools such as a mailing list to which release an-
nouncements are sent, as well as a bug tracker and a feature request tracker, which are
used to communicate about the ongoing and planned developments concerning the
platform.

5.3 Contributors

The implementation in FRODO of the research described in this thesis was partly
performed by the following EPFL students (in alphabetical order), whom I would like
to personally thank for their respective contributions. The full list of contributors
(beyond the work in this thesis) can be found on the FRODO website.

• Jonas Helfer implemented the Kidney Exchange problem generator;

• Arnaud Jutzeler implemented the valuable interface with JaCoP;

• Nacereddine Ouaret and Stéphane Rabie were involved in the preliminary imple-
mentation of the solution spaces layer;

• Andreas Schaedeli implemented the GUI and the Combinatorial Auctions prob-
lem generator;

• Achraf Tangui implemented a preliminary version of the meeting scheduling
problem generator;

• Éric Zbinden did a remarkable job at implementing P-DPOP and P2-DPOP.

167

https://sourceforge.net/projects/frodo2/

6 Conclusion

In this thesis, we have addressed two orthogonal issues that arise in many real-life
multi-agent decision-making problems: 1) how to make coordination possible while
still protecting the privacy of the agents, and 2) how to best commit to decisions when
all costs and rewards are not necessarily known exactly beforehand, but rather depend
on future, uncontrollable events. To model such multi-agent decision problems, we
have adopted — and extended — the traditional framework of Distributed Constraint
Satisfaction (DisCSP), and its generalization to optimization problems, Distributed
Constraint Optimization (DCOP).

We have illustrated how these two frameworks can be used to formalize many dis-
tributed problems, using the following examples of applications. In a distributed graph
coloring problem, each agent must make a decision (choose a color) that is different
from the decisions made by its neighbors; this class of problems includes for instance
the problem of the allocation of time schedules in a Time Division Multiple Access
(TDMA) scheme for an ad-hoc wireless network. Another very common, real-life
problem class is that of multi-agent meeting scheduling, in which participants want
to schedule multiple meetings among themselves, while taking into account each
attendee’s availabilities and preferences. We have also introduced a new class of sensor
network problems, with omni-directional sensors that must coordinate their decisions
to turn themselves on or off so as to observe a number of targets; we have used this
problem class to illustrate some of the properties of the algorithms we have developed
and presented in this thesis. Another class of real-life-inspired problems we have
considered is the class of resource allocation problems, in which agents need access to
various resources of limited capacity, and therefore need to decide who should reserve
access to which resource. We have also considered an even more concrete class of
optimization problems, in the form of multi-agent vehicle routing: depots control
fleets of delivery vehicles, and they must plan how they should serve a set of customer
requests at minimal total route length. Finally, we have described the more theoretical
problem of computing equilibria in one-shot, strategic games. After describing how all

169

Chapter 6. Conclusion

these examples of problems can be formalized as DisCSPs and/or DCOPs, we have also
reviewed the literature on DisCSP/DCOP algorithms; in particular, we have described
in more detail the DPOP algorithm, upon which we have based all the algorithms we
have developed.

One important feature of all these problems is that there is no omniscient entity that
knows the whole problem; instead, the knowledge of the problem is inherently dis-
tributed among the agents, each agent being initially only aware of the part of the
problem that directly affects the decisions it has to make. In the DisCSP/DCOP frame-
work, it is traditionally assumed that the agents are cooperative, and are willing to
exchange information if this exchange can help them eventually reach an agreement
that maximizes the social welfare. However, in many real-life problems, this coop-
eration is hindered by the agents’ desires to hide from other agents some of their
information about the problem and/or about the solution eventually chosen to the
problem. For instance, in meeting scheduling problems, participants may want to
hide their respective availability schedules and preferences, whom they are scheduling
meetings with, and what the times eventually chosen for their meetings are.

Novel Contributions on Privacy

In this thesis, we have proposed to define four types of information about the problem
and its solution that agents might want to protect. We have called agent privacy the
notion of hiding the presence and identities of participants from other unrelated agents
with which they do not directly share constraints. Topology privacy involves protecting
the knowledge of the inter-dependencies between various decisions, introduced by the
coordination constraints that must be enforced between agents, and by the constraints
and preferences that the agents express over these decisions. Constraint privacy covers
the knowledge of the nature of these constraints and preferences themselves: which
combinations of decisions are allowed or disallowed, and how much cost or utility
an agent assigns to various joint decisions. Finally, decision privacy is about the
knowledge of the solution that is chosen to the problem. After introducing these
definitions, we have described how they relate to previous work on privacy in DisCSP
and DCOP, and how various algorithms have been proposed to address subsets of
these four types of privacy, with various degrees of success. We have shown that these
algorithms can be seen as belonging to two different classes: 1) improvements over
known DisCSP/DCOP algorithms to reduce their privacy leaks, without ever really
removing these leaks entirely, and 2) algorithms inspired by work in cryptography and
Secure Multi-party Computation, which usually are able to provide some relatively
strong privacy guarantees in terms of constraint privacy and decision privacy, but
generally violate agent privacy and topology privacy.

Besides identifying these four types of privacy, the first main contribution of this thesis

170

is in the form of several new, privacy-preserving algorithms for DisCSP and DCOP,
which borrow the best of both worlds: they are based on the well-known DPOP algo-
rithm for DCOP, but they also make use of various cryptographic techniques in order
to provide strong privacy guarantees on constraint and decision privacy, without com-
promising on agent and topology privacy. The first of these algorithms, called P-DPOP,
involves three privacy-preserving techniques: 1) a novel leader election algorithm to
construct a hierarchy on the decision variables; 2) the introduction of codenames to
hide agent names, variable names, and variable values; and 3) a cost/utility obfusca-
tion scheme based on the addition of secret, large, random numbers in such a way
that the agents are able to perform operations on obfuscated costs/utilities without
having to decrypt them. Under the assumption that agents are honest but curious, we
have given formal proofs of the levels of privacy that P-DPOP guarantees: full agent
privacy, and limited topology, constraint, and decision privacy. In terms of the last
three privacy types, we have analyzed in detail what information P-DPOP may and
may not leak about the problem. We have also investigated a possible tradeoff between
topology privacy and performance, through the introduction of the P−-DPOP variant,
which makes minor topology privacy concessions in order to reduce the amount of
information exchanged by the agents.

The second algorithm we have proposed, called P3/2-DPOP, is an improvement over
P-DPOP that is able to guarantee full decision privacy. To achieve this level of privacy,
we have replaced the VALUE propagation phase in P-DPOP, during which the highest
agent in the hierarchy sends its optimal decisions to its descendants, with a novel
procedure that shuffles the hierarchy in order to put each other agent at the root of
the hierarchy in turn; we then iteratively restart the algorithm. In order to prevent the
agents from making inferences and attempting to game the protocol, our rerooting
algorithm makes sure that no agent knows which decision variable is at the root of
the hierarchy at each iteration (other than its owner agent), and that no agent can
predict the iterations at which its own decision variables will be roots. This is done by
exchanging messages encrypted using ElGamal homomorphic encryption, which are
passed around among the agents in a round-robin fashion. We also show how such a
round-robin communication structure can be set up without violating agent privacy,
through a routing protocol in which agents only exchange messages with their parents
and children in the hierarchy. We have formally proven that P3/2-DPOP guarantees full
agent and decision privacy, at a minor loss of topology privacy compared to P-DPOP,
and that it provides the same (partial) constraint privacy guarantees as P-DPOP.

Finally, the third algorithm we have proposed, which we call P2-DPOP, is an improve-
ment over P3/2-DPOP, in order to achieve full constraint privacy. To this effect, we have
replaced the obfuscation scheme in P3/2-DPOP and P-DPOP with a cryptographically
more secure scheme, based on ElGamal homomorphic encryption. We have formally
proven that P2-DPOP guarantees full agent, constraint and decision privacy, and par-
tially protects topology privacy. We have analyzed what may and may not be leaked in

171

Chapter 6. Conclusion

terms of topology privacy.

In order to evaluate the performances of these three algorithms against the state of the
art in privacy-preserving DisCSP and DCOP algorithms, we have carried out extensive
experiments on a large number of benchmark problem classes. All our algorithms have
been implemented inside the new FRODO 2 platform, which we have described in
the last chapter of this thesis. We have also implemented the MPC-DisCSP4 and MPC-
DisWCSP4 algorithms, which we consider the previous state of the art in algorithms
that provide strong privacy guarantees for DisCSP and DCOP respectively. In terms
of privacy, our algorithms are generally better than these two previous algorithms,
because MPC-Dis(W)CSP4 violates agent and topology privacy, and because it is
subject to collusions by the agents. In addition to providing better privacy guarantees,
our experiments have shown that, on most of the benchmark problem classes we have
considered, our algorithms also scale better. We have observed that the use of strong
cryptographic primitives such as ElGamal encryption in our P3/2-DPOP and P2-DPOP
algorithms comes at a high computational price compared to our simpler, but less
secure obfuscation scheme, with these two algorithms performing often several orders
of magnitude worse than P-DPOP. The latter algorithm seems to be able to scale to
much larger problems than the previous state of the art, which was often impractical
for realistically-sized problems.

Novel Contributions on Uncertainty

Besides the desire to protect their respective knowledge of the problem, another
common issue that can prevent agents from being able to make optimal decisions
is the presence of uncertainty in the problem. It is often the case that the agents
need to commit to decisions by a certain deadline, but the actual reward they will
receive from their decisions depends on uncontrollable events that may occur after the
deadline. An illustrative example in the meeting scheduling problem is the presence
of uncertainty in the time needed by an attendee to reach the location of a meeting,
which has an impact on whether or not she will be able to arrive on time. To help them
anticipate uncontrollable, future events, the agents can typically make use of models
of uncertainty, which predict the probabilities with which each event considered may
occur. For instance, the attendees of a meeting may be able to predict with some level
of accuracy the probabilities of heavy road traffic at the various meeting locations. In
this thesis, we have proposed an extension of the traditional DCOP framework, which
we call DCOP under Stochastic Uncertainty (StochDCOP), in which the agents use
random variables with known probability distributions to model the various sources
of uncertainty in the problem. We have illustrated how this new formalism can be
used to model stochastic versions of some of the aforementioned problem classes:
stochastic graph coloring, sensor networks with moving targets, and stochastic vehicle
routing. We have also proposed a new class of benchmarks to the DCOP community,

172

the Distributed Kidney Exchange Problem.

In a StochDCOP, the effective cost or utility of a solution, which is defined as an assign-
ment to the decision variables only, is now a function of the values of the uncontrollable,
random variables, instead of a single value like in the traditional DCOP framework.
Therefore, it is necessary to clarify the notion of optimality in this new setting; to this
purpose, our StochDCOP definition includes the concept of an evaluation function,
which summarizes in one single criterion the quality of a solution, independently of
the values of the random variables. We have investigated three examples of evaluation
functions, corresponding to three different ways of dealing with uncertainty: mini-
mizing the expected cost (i.e. average-case optimization), minimizing the worst-case
cost (i.e. robust optimization), and maximizing the probability of optimality (i.e. the
so-called consensus approach).

In many StochDCOP classes, the uncertainty in the problem possesses two remarkable
properties: 1) each source of uncertainty only has a limited, local influence on some
of the agents, and 2) several agents can depend differently on the same source of
uncertainty. In this thesis, we have proposed algorithms that attempt to discover and
exploit these two properties: 1) by localizing the reasoning about uncertainty, and 2)
by having the agents exchange information about their respective dependencies on
common random variables. We have proposed three general approaches that explore
the tradeoff between local reasoning and information exchange. In the complete ap-
proach, which we derive from previous work on Quantified DCOP, the information
exchange is maximal, with all information and reasoning about each source of uncer-
tainty being centralized at a specific agent. This approach has evident drawbacks in
terms of privacy, but has the advantage to be guaranteed to find the optimal solution.
At the other end of the spectrum, we have also proposed a local approach, in which
each agent resolves its uncertainty locally, without exchanging any information with
other agents about how its local subproblem depends on various sources of uncer-
tainty. Finally, we have also introduced an intermediate, global approach, in which the
extent to which the information about the dependencies on each particular source of
uncertainty is limited. We have called E[DPOP] the family of variants of DPOP that we
have introduced and that make use of these approaches to solve StochDCOPs.

We have compared the performances of our algorithms, both theoretically through
formal equivalence theorems, and empirically through experiments on stochastic
graph coloring, stochastic vehicle routing, and stochastic distributed kidney exchange
benchmarks. When the uncertainty space is too large for our algorithms to scale, we
have also proposed the use of sampling to reduce the uncertainty space by only con-
sidering a few, representative scenarios of possible future events. We have introduced
an algorithm, called collaborative sampling, which allows the agents to cooperate in
order to choose consistent samples for their common sources of uncertainty. We were
able to draw a number of conclusions from our experimental results.

173

Chapter 6. Conclusion

First, our performance results in terms of computational and communication com-
plexity have shown that the choice of which approach to use (between the complete,
local and global approaches) depends on the class of problems. On stochastic graph
coloring problems, the local approach is clearly the most efficient, both in terms of
runtime and of amount of information exchanged between the agents. Between the
two remaining approaches, the global one turns out to be the more expensive. On
the contrary, for stochastic vehicle routing problems, in which the computational
bottleneck is in solving each agent’s local sub-problem, the global approach runs faster
than the complete approach, and even sometimes than the local approach when using
consensus.

Second, we have shown that, as was known to be the case in the centralized setting, it
can be more beneficial to maximize the probability of optimality (consensus) instead
of minimizing the expected cost, even if the end goal is to perform average-case
optimization. This results holds for problem classes in which each agent has to solve a
computationally expensive sub-problem, such as the class of stochastic vehicle routing
problems. In such problem classes, the consensus approach can turn out to be less
expensive than the expectation approach, and still produce solutions of comparable
qualities.

Third, we have discovered that the benefits of sharing more information about uncer-
tainty over blindly resolving it locally depend highly on the evaluation function used.
When using the consensus approach in order to perform average-case optimization,
it turns out that the global approach produces solutions of lower quality than the
local approach, because it accumulates approximation errors; in this case, exchanging
more information is counter-productive, unless all information about each source
of uncertainty is fully shared to one agent, as it is done in the complete approach.
On the contrary, in the context of robust optimization, exchanging more information
about uncertainty allows the agents to make better-informed decisions, and produces
higher-quality solutions compared to the local approach.

Finally, we have investigated the possible benefits of performing collaborative sam-
pling instead of independent sampling, and here again, we have discovered that these
benefits depend on the evaluation function. When performing average-case optimiza-
tion (be it with the expectation or the consensus approach), collaborative sampling
yields higher solution qualities, because reasoning on consistent samples allows the
agents to better evaluate the most probable scenarios, and make decisions based on
these in order to minimize the expected cost. On the contrary, in robust optimization, it
is better when the agents independently produce inconsistent samples for the sources
of uncertainty, because they are then able to more thoroughly explore the uncertainty
space.

174

Possible Future Avenues of Research

Our work on privacy in DisCSP and DCOP has been based on the assumption that the
agents are honest but curious; in other words, the agents faithfully execute the protocol,
and we have only considered them as passive adversaries that attempt to infer as much
as possible about the other agents’ knowledge of the problem from the messages
they receive from them. In some application domains, this restriction might not be
realistic, as agents might be tempted to actively manipulate the protocol, for instance
by reporting false constraints and preferences or by executing a different algorithm,
in order to steer the solution towards one that better suits their own selfish interests,
and/or in order to learn more about the other agents’ constraints and preferences.

One way to address such selfish behavior from the agents could be to enforce incentives
towards cooperation, for instance through side payments. This thread of research has
already been partly explored, in the form of the M-DPOP algorithm [Petcu et al., 2008],
in which the agents have to pay VCG taxes that effectively align their selfish utility
functions with the goal of maximizing the social welfare. It is unclear how such a
mechanism could be applied in a context when privacy is a critical issue; this could be
the subject of further investigation. Another way to make sure that agents correctly
execute the protocol could be to introduce verification schemes (preferably in the
form of zero-knowledge proofs), possibly combined with a reputation mechanism that
would punish agents that actively try to manipulate the algorithm.

On the topic of uncertainty in DCOP, in this thesis we have restricted ourselves to
single-lookahead, anticipatory algorithms. One possibility for generalization is to
investigate algorithms that reason over longer horizons, in which case the deadlines to
commit to some decisions may be after the times at which the values of some of the
random variables become observable. This would correspond to a generalization to
multi-stage StochDCOP, for which some applicable work already exists in the context
of Quantified DCOP. One might also want to compare our anticipatory algorithms with
reactive algorithms, which apply to problems in which some of the decisions may be
revokable after the uncertainty has been resolved, and the solution may be adapted
online (possibly at some cost) to run-time observations. Examples of such reactive
approaches include the S-DPOP [Petcu and Faltings, 2005d] and RS-DPOP [Petcu and
Faltings, 2005c] algorithms.

175

Bibliography

Atlas, J. and Decker, K. (2007). A complete distributed constraint optimization method
for non-traditional pseudotree arrangements. In Durfee et al. [2007], pages 1–8.

Atlas, J. and Decker, K. (2010). Coordination for uncertain outcomes using distributed
neighbor exchange. In Luck and Sen [2010], pages 1047–1054.

Bednarz, A., Bean, N., and Roughan, M. (2009). Hiccups on the road to privacy-
preserving linear programming. In Al-Shaer, E. and Paraboschi, S., editors, Proceed-
ings of the 2009 ACM Workshop on Privacy in the Electronic Society (WPES’09), pages
117–120, Chicago, Illinois, USA. ACM.

Béjar, R., Domshlak, C., Fernández, C., Gomes, C., Krishnamachari, B., Selman, B., and
Valls, M. (2005). Sensor networks and distributed CSP: communication, computation
and complexity. Artificial Intelligence, 161(1–2):117–147.

Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988). Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC’88), pages 1–10, Chicago, Illinois, USA. ACM.

Bent, R. and van Hentenryck, P. (2004). The value of consensus in online stochastic
scheduling. In Zilberstein, S., Koehler, J., and Koenig, S., editors, Proceedings of
the Fourteenth International Conference on Automated Planning and Scheduling
(ICAPS’04), pages 219–226, Whistler, British Columbia, Canada. AAAI Press.

Bessiere, C., Faltings, B., Silaghi, M.-C., Yokoo, M., and Zhang, W., editors (2003). Pro-
ceedings of the Fourth International Workshop on Distributed Constraint Reasoning
(DCR’03), Acapulco, Mexico.

Bessiere, C., Maestre, A., Brito, I., and Meseguer, P. (2005). Asynchronous backtracking
without adding links: a new member in the ABT family. Artificial Intelligence, 161:7–
24.

Bessiere, C., Maestre, A., and Meseguer, P. (2001). Distributed dynamic backtracking. In
Proceedings of the IJCAI’01 Second International Workshop on Distributed Constraint
Reasoning (DCR’01), Seattle, WA, U.S.A.

177

Bibliography

Bilogrevic, I., Jadliwala, M., Hubaux, J.-P., Aad, I., and Niemi, V. (2011). Privacy-
preserving activity scheduling on mobile devices. In Sandhu, R. S. and Bertino,
E., editors, Proceedings of the First ACM COnference on Data and Application Security
and PrivacY (CODASPY’11), pages 261–272, San Antonio, Texas, USA. ACM.

Brito, I. and Meseguer, P. (2003). Distributed forward checking. In Proceedings of the
Ninth International Conference on Principles and Practice of Constraint Programming
(CP’03), volume 2833, pages 801–806, Kinsale, Ireland. Springer Berlin / Heidelberg.

Brito, I. and Meseguer, P. (2007). Distributed forward checking may lie for privacy. In
Pearce [2007].

Brito, I. and Meseguer, P. (2010). Cluster tree elimination for distributed constraint
optimization with quality guarantees. Fundamenta Informaticae, 102:263—286.

Chandy, K. M. and Lamport, L. (1985). Distributed snapshots: determining global states
of distributed systems. ACM Transactions on Computer Systems (TOCS), 3(1):63–75.

Chechetka, A. and Sycara, K. (2006). No-commitment branch and bound search for
distributed constraint optimization. In Nakashima et al. [2006], pages 1427—1429.

Cheung, T.-Y. (1983). Graph traversal techniques and the maximum flow problem in
distributed computation. IEEE Transactions on Software Engineering, 9(4):504–512.

Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., Padget,
J., Phelps, S., Rodríguez-Aguilar, J. A., and Sousa, P. (2006). Issues in multiagent
resource allocation. Informatica, 30(1):3–31.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a
number of delivery points. Operations Research, 12(4):568–581.

Cohn, A., editor (2006). Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI’06), Boston, Massachusetts, U.S.A. AAAI Press.

Croes, G. A. (1958). A method for solving traveling-salesman problems. Operations
Research, 6(6):791–812.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dorronsoro, B. (2007). The VRP Web. http://neo.lcc.uma.es/radi-aeb/WebVRP/.

Doshi, P., Matsui, T., Silaghi, M.-C., Yokoo, M., and Zanker, M. (2008). Distributed
private constraint optimization. In Zhang and Cercone [2008], pages 277–281.

Doxygen (2011). http://www.doxygen.org.

Du, W. and Atallah, M. J. (2001). Privacy-preserving cooperative scientific computa-
tions. In Proceedings of the Fourteenth IEEE Computer Security Foundations Work-
shop (CSFW’01), pages 273–282, Cape Breton, Nova Scotia, Canada. IEEE Computer
Society.

178

http://neo.lcc.uma.es/radi-aeb/WebVRP/
http://www.doxygen.org

Bibliography

Durfee, E. H., Yokoo, M., Huhns, M. N., and Shehory, O., editors (2007). Proceedings
of the Sixth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’07), Honolulu, Hawaii. ACM.

Elgamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472.

Ezzahir, R., Bessiere, C., Wahbi, M., Benelallam, I., and Bouyakhf, E. H. (2009). Asyn-
chronous inter-level forward-checking for DisCSPs. In Gent, I. P., editor, Proceedings
of the Fifteenth International Conference on Principles and Practice of Constraint
Programming (CP’09), volume 5732, pages 304–318, Lisbon, Portugal. Springer.

Faltings, B., Léauté, T., and Petcu, A. (2008). Privacy Guarantees through Distributed
Constraint Satisfaction. In Zhang and Cercone [2008], pages 350–358.

Farinelli, A., Rogers, A., Petcu, A., and Jennings, N. R. (2008). Decentralised coordina-
tion of low-power embedded devices using the max-sum algorithm. In Padgham
et al. [2008], pages 639–646.

Fitzpatrick, S. and Meertens, L. G. L. T. (2001). An experimental assessment of a
stochastic, anytime, decentralized, soft colourer for sparse graphs. In Steinhöfel,
K., editor, Proceedings of the International Symposium on Stochastic Algorithms:
Foundations and Applications (SAGA’01), volume 2264, pages 49–64, Berlin, Germany.
Springer.

Franzin, M. S., Freuder, E. C., Rossi, F., and Wallace, R. J. (2004). Multi-agent constraint
systems with preferences: Efficiency, solution quality, and privacy loss. Computa-
tional Intelligence, 20(2):264—286.

Gendreau, M., Potvin, J.-Y., Bräysy, O., Hasle, G., and Løkketangen, A. (2007). Meta-
heuristics for the vehicle routing problem and its extensions : A categorized bibliog-
raphy. Technical Report 2007-27, CIRRELT.

Gershman, A., Meisels, A., and Zivan, R. (2006). Asynchronous forward-bounding for
distributed constraints optimization. In Brewka, G., Coradeschi, S., Perini, A., and
Traverso, P., editors, Proceedings of the Seventeenth European Conference on Artificial
Intelligence (ECAI’06), pages 103–107, Riva del Garda, Italy. IOS Press.

Gershman, A., Meisels, A., and Zivan, R. (2009). Asynchronous forward bounding for
distributed COPs. Journal of Artificial Intelligence Research, 34:61–88.

Gershman, A., Zivan, R., Grinshpoun, T., Grubshtein, A., and Meisels, A. (2008). Measur-
ing distributed constraint optimization algorithms. In Proceedings of the AAMAS’08
Distributed Constraint Reasoning Workshop (DCR’08), pages 17–24, Estoril, Portugal.

Gillett, B. E. and Miller, L. R. (1974). A heuristic algorithm for the vehicle-dispatch
problem. Operations Research, 22(2):340–349.

179

http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_iat08.html
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_iat08.html

Bibliography

Goldreich, O. (2009). Foundations of Cryptography, volume 2, Basic Applications.
Cambridge University Press.

Goldreich, O., Micali, S. M., and Wigderson, A. (1987). How to play any mental game. In
Aho, A. V., editor, Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing (STOC’87), pages 218–229, New York, NY, USA. ACM.

Graphviz (2011). Graphviz – Graph Visualization Software. http://www.graphviz.org/.

Greenstadt, R., Grosz, B., and Smith, M. D. (2007). SSDPOP: Using secret sharing to
improve the privacy of DCOP. In Pearce [2007].

Greenstadt, R., Pearce, J. P., and Tambe, M. (2006). Analysis of privacy loss in distributed
constraint optimization. In Cohn [2006], pages 647–653.

Grinshpoun, T. and Meisels, A. (2008). Completeness and performance of the APO
algorithm. Journal of Artificial Intelligence Research (JAIR), 33:223–258.

Grubshtein, A., Grinshpoun, T., Meisels, A., and Zivan, R. (2009). Asymmetric dis-
tributed constraint optimization. In Hirayama et al. [2009], pages 60–74.

Herlea, T., Claessens, J., Preneel, B., Neven, G., Piessens, F., and Decker, B. D. (2001).
On securely scheduling a meeting. In Proceedings of the Sixteenth International
Conference on Information Security – Trusted information: the new decade challenge
(SEC’01), International Federation For Information Processing (IFIP) Series, pages
183–198, Disneyland Paris, France. Kluwer.

Hirayama, K., Yeoh, W., and Zivan, R., editors (2009). Proceedings of the IJCAI’09
Distributed Constraint Reasoning Workshop (DCR’09), Pasadena, California, USA.

Hirayama, K. and Yokoo, M. (1997). Distributed partial constraint satisfaction problem.
In Smolka, G., editor, Proceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP’97), volume 1330, pages 222–236, Linz,
Austria. Springer.

Hirayama, K. and Yokoo, M. (2005). The distributed breakout algorithms. Artificial
Intelligence, 161(1–2 (Special issue: Distributed constraint satisfaction)):89–115.

JaCoP (2011). JaCoP java constraint programming solver. http://jacop.osolpro.com/.

Jain, M., Taylor, M. E., Tambe, M., and Yokoo, M. (2009). DCOPs meet the real world:
Exploring unknown reward matrices with applications to mobile sensor networks.
In Boutilier, C., editor, Proceedings of the Twenty-First International Joint Conference
on Artificial Intelligence (IJCAI’09), pages 181–186, Pasadena, California, USA.

JDOM (2009). The JDOM XML toolbox for Java. http://www.jdom.org/.

180

http://www.graphviz.org/
http://jacop.osolpro.com/
http://www.jdom.org/

Bibliography

Jennings, N. R., Sierra, C., Sonenberg, L., and Tambe, M., editors (2004). Proceedings
of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’04), Columbia University, New York City, U.S.A. ACM Special Interest
Group on Artificial Intelligence (SIGART), IEEE Computer Society.

Joomla! (2011). http://www.joomla.org.

Kaelbling, L. P. and Saffiotti, A., editors (2005). Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAI’05), Edinburgh, Scotland.
Professional Book Center, Denver, USA.

Kearns, M. J., Littman, M. L., and Singh, S. P. (2001). Graphical models for game theory.
In Breese, J. S. and Koller, D., editors, Proceedings of the Seventeenth Conference
on Uncertainty in Artificial Intelligence (UAI’01), pages 253–260, Seattle, WA, U.S.A.
Morgan Kaufmann.

Kerschbaum, F. (2011). Computation on randomized data. In Proceedings of the 2011
Workshop on Cryptography and Security in Clouds (CSC’11), Zurich, Switzerland.

Kiekintveld, C., Yin, Z., Kumar, A., and Tambe, M. (2010). Asynchronous algorithms for
approximate distributed constraint optimization with quality bounds. In Luck and
Sen [2010], pages 133–140.

Léauté, T. and Faltings, B. (2009a). E[DPOP]: Distributed constraint optimization under
stochastic uncertainty using collaborative sampling. In Hirayama et al. [2009], pages
87–101.

Léauté, T. and Faltings, B. (2009b). Privacy-Preserving Multi-agent Constraint Satisfac-
tion. In Proceedings of the 2009 IEEE International Conference on PrivAcy, Security,
riSk And Trust (PASSAT’09), pages 17–25, Vancouver, British Columbia. IEEE Com-
puter Society Press.

Léauté, T. and Faltings, B. (2011a). Coordinating Logistics Operations with Privacy
Guarantees. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI’11), pages 2482–2487, Barcelona, Spain. AAAI Press.

Léauté, T. and Faltings, B. (2011b). Distributed Constraint Optimization under Stochas-
tic Uncertainty. In Proceedings of the Twenty-Fifth Conference on Artificial Intelli-
gence (AAAI’11), pages 68–73, San Francisco, USA.

Léauté, T., Ottens, B., and Faltings, B. (2010). Ensuring privacy through distributed
computation in multiple-depot vehicle routing problems. In Proceedings of the
ECAI’10 Workshop on Artificial Intelligence and Logistics (AILog’10), pages 25–30,
Lisbon, Portugal.

Leyton-Brown, K., Pearson, M., and Shoham, Y. (2000). Towards a universal test suite for
combinatorial auction algorithms. In Jhingran, A., Mason, J. M., and Tygar, D., editors,

181

http://www.joomla.org
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_passat09.html
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_passat09.html
http://homepage.mac.com/thomas.leaute/main/privacy_logistics_ijcai11.html
http://homepage.mac.com/thomas.leaute/main/privacy_logistics_ijcai11.html
http://homepage.mac.com/thomas.leaute/main/stochastic_dcop_aaai11.html
http://homepage.mac.com/thomas.leaute/main/stochastic_dcop_aaai11.html

Bibliography

Proceedings of the Second ACM Conference on Electronic commerce (EC’00), pages
66–76, Minneapolis, Minnesota, USA. ACM Special Interest Group on Electronic
Commerce (SIGEcom), ACM.

Li, W., Li, H., and Deng, C. (2011). Privacy-preserving horizontally partitioned linear
programs with inequality constraints. Optimization Letters.

Luck, M. and Sen, S., editors (2010). Proceedings of the Ninth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS’10), Toronto, Canada.

Maheswaran, R. T., Pearce, J. P., Bowring, E., Varakantham, P., and Tambe, M. (2006).
Privacy loss in distributed constraint reasoning: A quantitative framework for anal-
ysis and its applications. Autonomous Agents and Multi-Agent Systems (JAAMAS),
13(1):27–60.

Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2004a). Distributed algorithms for
DCOP: A graphical-game-based approach. In Bader, D. A. and Khokhar, A. A., editors,
Proceedings of the ISCA Seventeenth International Conference on Parallel and Dis-
tributed Computing Systems (ISCA PDCS’04), pages 432–439, Francisco, California,
USA. ISCA.

Maheswaran, R. T., Tambe, M., Bowring, E., Pearce, J. P., and Varakantham, P. (2004b).
Taking DCOP to the real world: Efficient complete solutions for distributed multi-
event scheduling. In Jennings et al. [2004], pages 310–317.

Mailler, R. and Lesser, V. R. (2003). A mediation based protocol for distributed con-
straint satisfaction. In Bessiere et al. [2003].

Mailler, R. and Lesser, V. R. (2004). Solving distributed constraint optimization prob-
lems using cooperative mediation. In Jennings et al. [2004], pages 438–445.

Mangasarian, O. L. (2010a). Privacy-preserving horizontally partitioned linear pro-
grams. Optimization Letters.

Mangasarian, O. L. (2010b). Privacy-preserving linear programming. Optimization
Letters, 5(1):165–172.

Matsui, T., Matsuo, H., Silaghi, M.-C., Hirayama, K., and Yokoo, M. (2008). Resource
constrained distributed constraint optimization with virtual variables. In Proceedings
of the Twenty-Third Conference on Artificial Intelligence (AAAI’08), pages 120–125,
Chicago, Illinois, USA. AAAI Press.

Matsui, T., Matsuo, H., Silaghi, M.-C., Hirayama, K., Yokoo, M., and Baba, S. (2010).
A quantified distributed constraint optimization problem. In Luck and Sen [2010],
pages 1023–1030.

Meisels, A. (2008). Distributed Search by Constrained Agents – Algorithms, Performance,
Communication. Advanced Information and Knowledge Processing. Springer.

182

Bibliography

Meisels, A. and Zivan, R. (2003). Asynchronous forward-checking on DisCSPs. In
Bessiere et al. [2003].

Meisels, A. and Zivan, R. (2007). Asynchronous forward-checking for DisCSPs. Con-
straints, 12:131–150.

Modi, P. J., Jung, H., Tambe, M., Shen, W.-M., and Kulkarni, S. (2001). A dynamic
distributed constraint satisfaction approach to resource allocation. In Walsh, T.,
editor, Proceedings of the Seventh International Conference on Principles and Practice
of Constraint Programming (CP’01), number 2239 in Lecture Notes In Computer
Science, pages 685–700, Paphos, Cyprus. Springer.

Modi, P. J., Shen, W.-M., Tambe, M., and Yokoo, M. (2005). ADOPT: Asynchronous
distributed constraint optimization with quality guarantees. Artificial Intelligence,
161:149–180.

Monier, P., Piechowiak, S., and Mandiau, R. (2009). A complete algorithm for DisCSP:
Distributed backtracking with sessions (DBS). In Proceedings of the Second Interna-
tional Workshop on Optimisation in Multi-Agent Systems (OPTMAS’09), Budapest,
Hungary.

Mura, P. L. (2000). Game networks. In Boutilier, C. and Goldszmidt, M., editors, Pro-
ceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (UAI’00),
pages 335–342, Stanford, California, USA. Morgan Kaufmann.

Nakashima, H., Wellman, M. P., Weiss, G., and Stone, P., editors (2006). Proceedings
of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’06), Hakodate, Japan. ACM Press.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36(1):48–49.

Netzer, A., Meisels, A., and Grubshtein, A. (2010). Concurrent forward bounding for
DCOPs. In van der Hoek, W., Kaminka, G. A., Lespérance, Y., Luck, M., and Sen, S.,
editors, Proceedings of the Twelfth International Workshop on Distributed Constraint
Reasoning (DCR’10), pages 65–79, Toronto, Canada.

Olteanu, A., Léauté, T., and Faltings, B. (2011). Asynchronous forward bounding (AFB):
Implementation and performance experiments. Semester project report, EPFL
Artificial Intelligence Lab (LIA). http://liawww.epfl.ch/cgi-bin/Pubs/single_entry?
bibtex_key=Olteanu2011.

OR-Objects (2010). Operations Research – Java Objects. http://or-objects.org/.

Ottens, B. and Faltings, B. (2008). Coordinating agent plans through distributed con-
straint optimization. In Proceedings of the ICAPS’08 Multiagent Planning Workshop
(MASPLAN’08), Sydney, Australia.

183

http://liawww.epfl.ch/cgi-bin/Pubs/single_entry?bibtex_key=Olteanu2011
http://liawww.epfl.ch/cgi-bin/Pubs/single_entry?bibtex_key=Olteanu2011
http://or-objects.org/

Bibliography

Padgham, L., Parkes, D. C., Müller, J. P., and Parsons, S., editors (2008). Proceedings of
the Seventh International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’08), Estoril, Portugal.

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity
classes. In Stern, J., editor, Advances in Cryptology – EUROCRYPT ’99, International
Conference on the Theory and Application of Cryptographic Techniques, Proceedings,
number 1592 in Lecture Notes In Computer Science, pages 223–238, Prague, Czech
Republic. Springer.

Parsons, S., Rodríguez-Aguilar, J. A., and Klein, M. (2011). Auctions and bidding: A
guide for computer scientists. ACM Computing Surveys (CSUR), 43(2).

Pearce, J. P., editor (2007). Proceedings of the Ninth International Workshop on Dis-
tributed Constraint Reasoning (CP-DCR’07), Providence, RI, USA.

Pearce, J. P. and Tambe, M. (2007). Quality guarantees on k-optimal solutions for
distributed constraint optimization problems. In Veloso [2007], pages 1446–1451.

Pedersen, T. B. and Savaş, E. (2009). Impossibility of unconditionally secure scalar
products. Data and Knowledge Engineering, 68(10):1059–1070.

Pedersen, T. P. (1991). A threshold cryptosystem without a trusted party (extended ab-
stract). In Davies, D. W., editor, Advances in Cryptology – EUROCRYPT ’91, Workshop
on the Theory and Application of Cryptographic Techniques, Proceedings, volume
547, pages 522–526, Brighton, U.K. Springer.

Petcu, A. (2006). FRODO: A FRamework for Open/Distributed constraint Optimization.
Technical Report 2006/001, Swiss Federal Institute of Technology (EPFL), Lausanne
(Switzerland).

Petcu, A. (2007). A Class of Algorithms for Distributed Constraint Optimization. PhD
thesis no. 3942, Swiss Federal Institute of Technology (EPFL), Lausanne (Switzer-
land).

Petcu, A. and Faltings, B. (2005a). A-DPOP: Approximations in distributed optimiza-
tion. In van Beek, P., editor, Proceedings of the Eleventh International Conference
on Principles and Practice of Constraint Programming (CP’05), volume 3709, pages
802–806, Sitges, Spain. Springer.

Petcu, A. and Faltings, B. (2005b). DPOP: A Scalable Method for Multiagent Constraint
Optimization. In Kaelbling and Saffiotti [2005], pages 266–271.

Petcu, A. and Faltings, B. (2005c). RS-DPOP: Optimal solution stability in continuous-
time optimization. In Proceedings of the Sixth International Workshop on Distributed
Constraint Reasoning (DCR’05), Edinburgh, Scotland.

184

Bibliography

Petcu, A. and Faltings, B. (2005d). S-DPOP: Superstabilizing, fault-containing multia-
gent combinatorial optimization. In Veloso, M. M. and Kambhampati, S., editors,
Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI’05),
pages 449–454, Pittsburgh, Pennsylvania, U.S.A. AAAI Press / The MIT Press.

Petcu, A. and Faltings, B. (2006). O-DPOP: An algorithm for open/distributed constraint
optimization. In Cohn [2006], pages 703–708.

Petcu, A. and Faltings, B. (2007). MB-DPOP: A new memory-bounded algorithm for
distributed optimization. In Veloso [2007], pages 1452–1457.

Petcu, A., Faltings, B., and Parkes, D. C. (2008). M-DPOP: Faithful distributed im-
plementation of efficient social choice problems. Journal of Artificial Intelligence
Research (JAIR), 32:705–755.

Saidman, S. L., Roth, A. E., Sönmez, T., Ünver, M. U., and Delmonico, F. L. (2006).
Increasing the opportunity of live kidney donation by matching for two- and three-
way exchanges. Transplantation, 81(5):773–782.

Shamir, A. (1979). How to share a secret. Communications of the ACM, 22(11):612–613.

Silaghi, M.-C. (2005a). Hiding absence of solution for a distributed constraint satis-
faction problem (poster). In Proceedings of the Eighteenth International Florida
Artificial Intelligence Research Society Conference (FLAIRS’05), pages 854–855, Clear-
water Beach, FL, USA. AAAI Press.

Silaghi, M.-C. (2005b). Using secure DisCSP solvers for generalized Vickrey auctions —
complete and stochastic techniques. In Kaelbling and Saffiotti [2005].

Silaghi, M.-C., Faltings, B., and Petcu, A. (2006). Secure combinatorial optimization
simulating DFS tree-based variable elimination. In Proceedings of the Ninth Inter-
national Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida. Springer.

Silaghi, M.-C. and Mitra, D. (2004). Distributed constraint satisfaction and optimization
with privacy enforcement. In Proceedings of the 2004 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT’04), pages 531–535, Beijing, China.
IEEE Computer Society Press.

Silaghi, M.-C., Sam-Haroud, D., and Faltings, B. (2000). Asynchronous search with
aggregations. In Proceedings of the Seventeenth National Conference on Artificial In-
telligence and Twelfth Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI’00), pages 917–922, Austin, TX, U.S.A. AAAI Press/The MIT Press.

Silaghi, M.-C., Sam-Haroud, D., and Faltings, B. (2001). ABT with asynchronous re-
ordering. In Proceedings of the Second Asia-Pacific Conference on Intelligent Agent
Technology (IAT’01), pages 54–63, Maebashi City, Japan. World Scientific Publishing
Company Pte Ltd.

185

Bibliography

Silaghi, M.-C. and Yokoo, M. (2006). Nogood-based asynchronous distributed opti-
mization (ADOPT-ng). In Nakashima et al. [2006], pages 1389–1396.

Silaghi, M.-C. and Yokoo, M. (2007). Dynamic DFS tree in ADOPT-ing. In Proceedings
of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI’07), pages
763–769, Vancouver, British Columbia, Canada. AAAI Press.

Singh, S., Soni, V., and Wellman, M. P. (2004). Computing approximate Bayes-Nash
equilibria in tree-games of incomplete information. In Breese, J. S., Feigenbaum,
J., and Seltzer, M. I., editors, Proceedings of the Fifth ACM Conference on Electronic
Commerce (EC’04), pages 81–90, New York, NY, USA. ACM.

Soni, V., Singh, S., and Wellman, M. P. (2007). Constraint satisfaction algorithms for
graphical games. In Durfee et al. [2007], pages 67–74.

Stranders, R., Fave, F. M. D., Rogers, A., and Jennings, N. R. (2011). U-GDL: A de-
centralised algorithm for DCOPs with uncertainty. In Proceedings of the Fourth
International Workshop on Optimisation in Multi-Agent Systems (OptMAS’11), Taipei,
Taiwan.

Sultanik, E. A., Lass, R. N., and Regli, W. C. (2007). DCOPolis: A framework for simulating
and deploying distributed constraint optimization algorithms. In Pearce [2007].

Taylor, M. E., Jain, M., Jin, Y., Yokoo, M., and Tambe, M. (2010). When should there be a
“me" in “team"? Distributed multi-agent optimization under uncertainty. In Luck
and Sen [2010].

Toth, P. and Vigo, D., editors (2001). The Vehicle Routing Problem. SIAM.

Tsiounis, Y. and Yung, M. (1998). On the security of Elgamal-based encryption. In
Imai, H. and Zheng, Y., editors, Proceedings of the First International Workshop
on Practice and Theory in Public Key Cryptography (PKC’98), volume 1431, pages
117–134, Pacifico Yokohama, Japan. Springer.

Vaidya, J. (2009). Privacy-preserving linear programming. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Applied Computing (SAC’09), pages 2002–2007,
Honolulu, Hawaii, USA. ACM.

Veloso, M. M., editor (2007). Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence (IJCAI’07), Hyderabad, India.

Vickrey, D. and Koller, D. (2002). Multi-agent algorithms for solving graphical games. In
Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI’02),
pages 345–351, Edmonton, Alberta, Canada. AAAI Press.

Vinyals, M., Pujol-Gonzalez, M., Rodríguez-Aguilar, J. A., and Cerquides, J. (2010a).
Divide-and-coordinate: DCOPs by agreement. In Luck and Sen [2010], pages 149–
156.

186

Bibliography

Vinyals, M., Rodríguez-Aguilar, J. A., and Cerquide, J. (2011a). A survey on sensor
networks from a multiagent perspective. The Computer Journal, 54(3):455–470.

Vinyals, M., Rodríguez-Aguilar, J. A., and Cerquides, J. (2010b). Constructing a unifying
theory of dynamic programming DCOP algorithms via the generalized distributive
law. Autonomous Agents and Multi-Agent Systems (JAAMAS), 22(3):439–464.

Vinyals, M., Shieh, E., Cerquides, J., Rodríguez-Aguilar, J. A., Yin, Z., Tambe, M., and
Bowring, E. (2011b). Quality guarantees for region optimal DCOP algorithms. In
Tumer, K., Yolum, P., Sonenberg, L., and Stone, P., editors, Proceedings of the Tenth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS’11),
pages 133–140, Taipei, Taiwan. IFAAMAS.

Wahbi, M., Ezzahir, R., Bessiere, C., and Bouyakhf, E. H. (2011). DisChoco 2: A platform
for distributed constraint reasoning. In Proceedings of the Thirteenth International
Workshop on Distributed Constraint Reasoning (DCR’11), pages 112–121, Barcelona,
Spain. http://www.lirmm.fr/coconut/dischoco/.

Wallace, R. J. and Freuder, E. C. (2005). Constraint-based reasoning and privacy/effi-
ciency tradeoffs in multi-agent problem solving. Artificial Intelligence, 161(1–2):209–
227.

Wang, C., Ren, K., and Wang, J. (2011). Secure and practical outsourcing of linear
programming in cloud computing. In Proceedings of the Thirtieth IEEE International
Conference on Computer Communications (IEEE INFOCOM’11), pages 820–828,
Shanghai, China.

XCSP (2008). XML Representation of Constraint Networks — Format XCSP 2.1. Organis-
ing Committee of the Third International Competition of CSP Solvers.

Yao, A. C.-C. (1986). How to generate and exchange secrets. In Proceedings of the
Twenty-Seventh Annual Symposium on Foundations of Computer Science (SFSC’86),
pages 162–167, Toronto, Ontario, Canada. IEEE Computer Society.

Yeoh, W., Felner, A., and Koenig, S. (2008). BnB-ADOPT: an asynchronous branch-and-
bound DCOP algorithm. In Padgham et al. [2008], pages 591–598.

Yokoo, M. (1995). Asynchronous weak-commitment search for solving distributed
constraint satisfaction problems. In Montanari, U. and Rossi, F., editors, Proceed-
ings of the First International Conference on Principles and Practice of Constraint
Programming (CP’95), number 976 in Lecture Notes In Computer Science, pages
88–102, Cassis, France. Springer.

Yokoo, M., Durfee, E. H., Ishida, T., and Kuwabara, K. (1992). Distributed constraint
satisfaction for formalizing distributed problem solving. In Proceedings of the Twelfth
International Conference on Distributed Computing Systems (ICDCS’92), pages 614–
621, Yokohama, Japan. IEEE Computer Society Press.

187

http://www.lirmm.fr/coconut/dischoco/

Bibliography

Yokoo, M. and Hirayama, K. (1996). Distributed breakout algorithm for solving dis-
tributed constraint satisfaction problems. In Tokoro, M., editor, Proceedings of the
Second International Conference on Multiagent Systems (ICMAS’96), pages 401–408,
Kyoto, Japan. AAAI Press.

Yokoo, M. and Suzuki, K. (2002). Secure multi-agent dynamic programming based
on homomorphic encryption and its application to combinatorial auctions. In
Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’02), pages 112–119, Bologna, Italy. ACM Press.

Yokoo, M., Suzuki, K., and Hirayama, K. (2002). Secure distributed constraint satisfac-
tion: Reaching agreement without revealing private information. In van Henten-
ryck, P., editor, Proceedings of the Eighth International Conference on Principles and
Practice of Constraint Programming (CP’02), volume 2470, pages 387–401, Cornell
University, Ithaca, NY, U.S.A. Springer-Verlag.

Yokoo, M., Suzuki, K., and Hirayama, K. (2005). Secure distributed constraint sat-
isfaction: Reaching agreement without revealing private information. Artificial
Intelligence, 161(1–2, Distributed Constraint Satisfaction):229–245.

Zhang, C. and Cercone, N., editors (2008). Proceedings of the 2008 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’08), Sydney, Australia.
IEEE Computer Society Press.

Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. (2005). Distributed stochastic search
and distributed breakout: properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial Intelligence, 161(1–2):55–87.

Zivan, R., Glinton, R., and Sycara, K. P. (2009). Distributed constraint optimization
for large teams of mobile sensing agents. In Proceedings of the 2009 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT’09), pages 347–354,
Milan, Italy. IEEE Computer Society Press.

Zivan, R. and Meisels, A. (2004). Concurrent dynamic backtracking for distributed
CSPs. In Proceedings of the Tenth International Conference on Principles and Practice
of Constraint Programming (CP’04), volume 3258/2004, pages 782–787, Toronto,
Canada. Springer Berlin / Heidelberg.

Zivan, R. and Meisels, A. (2006). Concurrent search for distributed CSPs. Artificial
Intelligence, 170(4):440–461.

188

Index, 189

AAS, 21
ABT, 19

ABTnot, 20, 44
ABTR, 21

ADOPT, 25, 114, 163
ADOPT-ng, 29
BnB-ADOPT, 29, 33

AFB, 32, 163
AFB-BJ, 32

AFC, 23
AFC-ng, 23

agent, 7, 8, 100, 111, 113
honest but curious, 69, 175
knowledge, 44, 69, 119, 122
neighbor, 40, 61, 69, 71
virtual, 114, 115, 119, 120, 122, 139

AILFC, 23
APO, 23
auction

combinatorial, 14, 91, 167
AWC, 20

back-edge, 26, 77

codename, 53, 56, 58, 70, 72, 76, 77, 80, 84
collision, 57

collusion, 49, 60, 89, 98
CompAPO, see APO
CompOptAPO, see OptAPO
ConcDB, 24
ConcFB, 33
consensus, 102, 103, 105, 134, 138, 142,

145, 148–150
constraint

asymmetric, 44
check, see NCCC
global, 162
graph, 85, 166

decisional, 120
diameter, 27, 73, 78, 117

hard, 7
knowledge, 44, 69, 85, 86, 92, 94, 114,

122
probabilistic, 111
soft, 9, 55, 100, 113

cost, 9
distribution, 111, 112

cycle, 40, 53, 73, 74, 76, 78

DaCSA, 36
DALO, 37
DBA, 33
DBS, 20
DCEE, 111
DCOP, 8

algorithms, 163
complete, 24
incomplete, 33

Quantified (QDCOP), 112, 115, 131
Resource-Constrained (RCDCOP), 131
stochastic uncertainty, see StochDCOP

DCPOP, 32
DCTE, 32
decryption, 60, 64, 65, 67, 68, 72, 80, 84
DisCHOCO, 160
DisCSP, 7

algorithms, 19, 164
DisDB, 20
DisFC, 20, 45

189

Index

DisSDMDVRP, see Vehicle Routing Prob-
lem (VRP)

DisWCSP, 9, 65, 96
DKEP, see kidney exchange
domain, 7, 8, 100, 111, 113, 138, 142

knowledge, 44, 54, 69, 101
DPOP, 29, 153, 154, 163

A-DPOP, 35
E[DPOP], 163

Central-, 128
Comp-, 115
equivalence, 135
Global-, 129
hybrid, 134
Local-, 123

M-DPOP, 175
MB-DPOP, 32
O-DPOP, 163

ASO-DPOP, 163
P-DPOP, 50, 70, 77, 82, 84, 163, 167

P-DPOP−, 58, 70, 73, 82, 84
P2-DPOP, 65, 72, 81, 84, 85, 163, 167
P3/2-DPOP, 58, 71, 78, 83, 85, 163

Param-DPOP, 163
S-DPOP, 163, 175

RS-DPOP, 175
DSA, 34, 163
dynamic programming, 29, 45, 57, 66

encryption
ElGamal, 41, 60, 64, 65, 67, 68, 84, 86

evaluation function, 100, 101, 112
commensurability, 103, 115, 123, 128,

129, 134, 144
consensus, see consensus
expectation, see expectation
linearity, 103, 122, 123, 125, 127, 128,

135–137, 144
robust, see robustness
support, 103, 115

expectation, 101, 102, 103–105, 107, 115,
134, 138, 142, 145, 150, 153

FRODO, 86, 96, 144, 159

game
graphical, 16, 93
party, 18, 95

GDL
Action-, 32

graph coloring, 10, 86
stochastic, 104, 126, 135, 145, 146, 153

heuristic, 27, 132, 135
least connected, 133, 145
most branching, 125, 133
most connected, 27, 133, 145
most exploration, 133
random, 52, 145

hypercube, 162

IDB, 33
induced width, see width

JaCoP, 161, 162, 167
join, 30, 31, 128, 134, 161

kidney exchange, 109, 137, 145, 149, 167

lowest common ancestor (lca), 129, 132–
134, 138, 142

Max-DisCSP, 9, 34, 56, 82–84
Max-Sum, 35
meeting scheduling, 10, 88, 167
MGM, MGM-2, 35, 163
MPC, see SMC
MPC-Dis(W)CSP4, 24, 85, 86, 163, 164

NCBB, 33
NCCC, 32, 143, 145, 152, 165
null link, 44, 115, 119, 120

obfuscation, 54, 56, 82, 83, 85
OptAPO, 29
ordering of variables

circular, 60, 71, 79
linear, 19, 65, 66, 81

190

Index

pseudo-tree, see pseudo-tree

permutation, 54, 60, 63, 65, 85
priority, 19
privacy

agent, 40, 44, 49, 53, 56, 60, 69, 114,
122, 125

constraint, 41, 45, 46, 55, 65, 81, 114,
122, 125, 152

decision, 41, 44, 46, 56, 58, 83, 84, 86,
95

guarantees, 69
topology, 40, 45, 49, 53, 54, 56, 58, 60,

73, 82, 86, 89, 92, 95, 122, 125
probability distribution, 100, 138, 145

knowledge, 101
projection, 31, 68, 115, 123, 127–129, 134,

136, 139, 141, 161
pseudo-

child, 26, 76, 77
parent, 26, 75, 85
tree, 23, 26, 29, 33, 57, 60, 70, 75, 117,

164, 166
consistency, 114, 115, 116, 119, 121–

124, 127, 132

reformulation, 31, 121, 123, 125, 132
rerooting, 59, 62, 64, 72, 80, 85, 86
resource allocation, 13, 91
robustness, 102, 103–105, 107, 114–116,

124, 126, 130, 132, 135, 137, 138,
145, 149, 150, 154, 155

root election, 27, 51, 57, 70, 73, 117, 164
routing, 60, 68, 71, 79

sampling, 102, 103, 138, 153, 154
collaborative, 141, 154, 155
independent, 140, 154, 155

SBB, see SynchBB
scenario, 137, 138, 143, 155
secret sharing, 45
semi-private information, 40, 69, 82, 84,

89

sensor network, 11
stochastic, 105, 124, 126, 132, 133, 135

separator, 31, 56–58, 65, 68
simulated time, 85, 145, 165
SMC, 46
solution

space, 161, 167
to a DCOP, 9
to a DisCSP, 8
to a QDCOP, 113
to a StochDCOP, 100, 122, 128

StochDCOP, 99
algorithms, 163

StochDisSDMDVRP, see Vehicle Routing
Problem (VRP)

StochDKEP, see kidney exchange
subtree, 31, 62, 130
SynchBB, 24, 163

third party, 46
threshold scheme, see collusion
treewidth, see width

utility, 9
distribution, 111

variable
decision, 7, 8, 100, 111, 113
knowledge, 44, 69, 92, 101
random, 100, 113

Vehicle Routing Problem (VRP), 14, 96, 162
stochastic, 107, 145, 150

width
induced, 32, 58, 121, 124, 135, 142
treewidth, 32, 58

worst case, see robustness

XCSP, 160

191

Key Skills and Projects

Graduate Studies and Diplomas

Thomas Léauté
EPFL LIA, Station 14
CH-1015 Lausanne, Switzerland
(+41) (0)765 210 200
thomas.leaute@alum.mit.edu

• I am looking forward to contributing to
software projects, possibly involving A.I.

• I like multi-cultural teamwork as well as
contact with customers.

École Polytechnique Fédérale de Lausanne, Switzerland
PhD in Computer Science
Specialization in Privacy and Uncertainty in Distributed Artificial Intelligence

2006 — 2011

Personal Activities

Professional Experience
 2005 — 2006 European Space Agency — European Space Operations Centre, Germany

Young Graduate Trainee
Advanced Mission Concepts and Technology Office
 I delivered a graphical decision support tool for the scheduling of data downloads from the Mars Express

spacecraft, which is subject to very tight memory, bandwidth and timing constraints. The tool was developed in
Java using rapid prototyping, and has since been adopted for the day-to-day operation of the spacecraft.

Massachusetts Institute of Technology, USA
Master of Science in Aeronautics and Astronautics
Specialization in Applications of Artificial Intelligence to Autonomous Robots

2003 — 2005

École Centrale des Arts et Manufactures de Paris, France
Diplôme d’Ingénieur — “Engineering Diploma”

2001 — 2003

Hardware-in-the-loop Development in C/C++ using CPLEX — A.I. and Robotics
My Master’s thesis tackles the problem of high-level guidance of hybrid discrete-continuous systems, and was
applied to the coordination of Unmanned Aerial Vehicles (UAVs) under a contract with Boeing, and of
autonomous space exploration rovers. The techniques involved include model-based programming, Mixed-
Integer Linear Programming (MILP), Hierarchical Temporal Networks (HTNs), and TCP/IP sockets.

Open-Source Development in Java — Distributed Artificial Intelligence
Project manager and core developer of the FRODO 2 distributed platform for multi-agent decision-making,
which has raised interest from academics and industrials in 13 different countries since its release in 2009,
and has lead to industrial projects with Nokia, Armasuisse, and Novea (express delivery service).

My PhD thesis addresses privacy and stochastic uncertainty in Distributed Constraint Satisfaction (DisCSP) and
Distributed Constraint Optimization (DCOP), using techniques such as Secure Multi-Party Computation
(MPC), ElGamal and Paillier homomorphic encryption, Shamir secret sharing, and collaborative sampling.

Team Management — Student associations and community service
Since 2007, I am an active member of the Rotaract Club of Lausanne, a community service association for
students and young professionals; I served as Secretary in 2008-2009, and as Webmaster ever since.

In 2001-2002 I was Secretary General of Forum Centrale Entreprises, a !400,000-turnover student association
in charge of organizing an annual job fair at École Centrale Paris that brings together one thousand students and
more than one hundred firms and universities of European and international fame.

Language Proficiency
French: native
English: fluent (C2)

German: intermediate (B1-B2)
Dutch: intermediate (B1-B2)

Spanish: beginner (A2-B1)
Italian: beginner (A2-B1)

Ambassadorial Scholar of the Rotary Foundation — Cambridge, USA, 2003-2004
The purpose of this scholarship is to further international understanding. Scholars serve as ambassadors of
goodwill to the people of their host country, and give presentations to Rotary clubs and other groups.

First Aid Volunteer — EPFL campus, since 2007
The mission of first aid volunteers is to respond to every-day medical emergencies. First aid volunteers are trained
to deliver cardiopulmonary resuscitation (CPR) and to use automated external defibrillators (AED).

Personal Information — 29, single, French citizenship

193

List of Personal Publications

Faltings, B., Léauté, T., and Petcu, A. (2008). Privacy Guarantees through Distributed
Constraint Satisfaction. In Zhang, C. and Cercone, N., editors, Proceedings of the 2008
IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’08),
pages 350–358, Sydney, Australia. IEEE Computer Society Press.

Hirayama, K., Yeoh, W., and Zivan, R., editors (2009). Proceedings of the IJCAI’09
Distributed Constraint Reasoning Workshop (DCR’09), Pasadena, California, USA.

Léauté, T. and Faltings, B. (2009a). E[DPOP]: Distributed constraint optimization under
stochastic uncertainty using collaborative sampling. In Hirayama et al. [2009], pages
87–101.

Léauté, T. and Faltings, B. (2009b). Privacy-Preserving Multi-agent Constraint Satisfac-
tion. In Proceedings of the 2009 IEEE International Conference on PrivAcy, Security,
riSk And Trust (PASSAT’09), pages 17–25, Vancouver, British Columbia. IEEE Com-
puter Society Press.

Léauté, T. and Faltings, B. (2011a). Coordinating Logistics Operations with Privacy
Guarantees. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI’11), pages 2482–2487, Barcelona, Spain. AAAI Press.

Léauté, T. and Faltings, B. (2011b). Distributed Constraint Optimization under Stochas-
tic Uncertainty. In Proceedings of the Twenty-Fifth Conference on Artificial Intelli-
gence (AAAI’11), pages 68–73, San Francisco, USA.

Léauté, T., Ottens, B., and Faltings, B. (2010). Ensuring privacy through distributed
computation in multiple-depot vehicle routing problems. In Proceedings of the
ECAI’10 Workshop on Artificial Intelligence and Logistics (AILog’10), pages 25–30,
Lisbon, Portugal.

Léauté, T., Ottens, B., and Szymanek, R. (2009). FRODO 2.0: An Open-Source Frame-
work for Distributed Constraint Optimization. In Hirayama et al. [2009], pages
160–164. http://liawww.epfl.ch/frodo/.

195

http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_iat08.html
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_iat08.html
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_passat09.html
http://homepage.mac.com/thomas.leaute/main/privacy_dcsp_passat09.html
http://homepage.mac.com/thomas.leaute/main/privacy_logistics_ijcai11.html
http://homepage.mac.com/thomas.leaute/main/privacy_logistics_ijcai11.html
http://homepage.mac.com/thomas.leaute/main/stochastic_dcop_aaai11.html
http://homepage.mac.com/thomas.leaute/main/stochastic_dcop_aaai11.html
http://homepage.mac.com/thomas.leaute/main/frodo_dcr09.html
http://homepage.mac.com/thomas.leaute/main/frodo_dcr09.html
http://liawww.epfl.ch/frodo/

	Acknowledgements
	Abstract (English/Français)
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	Introduction
	Preliminaries
	The DisCSP and DCOP Formalisms
	Examples of Applications
	Graph Coloring
	Meeting Scheduling
	Sensor Networks
	Resource Allocation
	Distributed Vehicle Routing Problems
	Equilibria in Graphical Games

	Complete DisCSP Algorithms
	ABT: Asynchronous Backtracking
	AWC: Asynchronous Weak Commitment
	AAS: Asynchronous Aggregation Search
	AFC: Asynchronous Forward Checking
	APO: Asynchronous Partial Overlay
	ConcDB: Concurrent Dynamic Backtracking
	MPC-DisCSP4: Secure Multiparty Computation

	Complete DCOP Algorithms
	SynchBB: Synchronous Branch and Bound
	ADOPT: Asynchronous Distributed OPTimization
	OptAPO: Optimization by Asynchronous Partial Overlay
	DPOP: Dynamic Programming Optimization Protocol
	AFB: Asynchronous Forward Bounding
	NCBB: No-Commitment Branch and Bound
	ConcFB: Concurrent Forward Bounding

	Incomplete DCOP Algorithms
	DBA: Distributed Breakout Algorithm
	DSA: Distributed Stochastic Algorithm
	MGM: Maximum Gain Message
	A-DPOP: Approximate DPOP
	The Max-Sum Algorithm
	DaCSA: Divide and Coordinate Subgradient Algorithm
	DALO: Distributed Asynchronous Local Optimization

	Strong Privacy Guarantees in DCOP
	Privacy Definitions
	Related Work
	Cooperative ElGamal Homomorphic Encryption
	Privacy in DisCSP and DCOP
	Privacy in Linear Programming

	The P-DPOP Algorithm
	Overview of the Algorithm
	Root Variable Election
	UTIL Propagation
	VALUE Propagation
	Algorithm Properties
	P-DPOP-: Trading off Topology Privacy for Performance

	Full Decision Privacy: the P3/2-DPOP Algorithm
	Overview of the Algorithm
	Assigning Unique IDs to Variables
	Routing of Messages along a Circular Variable Ordering
	Choosing a New Root Variable
	Algorithm Properties

	Full Constraint Privacy: the P2-DPOP Algorithm
	Encrypted UTIL Propagation along a Linear Variable Order
	Decrypting an Optimal Value for the Root Variable
	Algorithm Properties

	Privacy Analysis
	Agent Privacy
	Topology Privacy
	Constraint Privacy
	Decision Privacy

	Experimental Results
	Graph Coloring
	Meeting Scheduling
	Resource Allocation
	Equilibria in Graphical Games
	Vehicle Routing Problems

	Summary

	StochDCOP: DCOP under Stochastic Uncertainty
	DCOP under Stochastic Uncertainty
	StochDCOP Formalism
	Evaluation Functions

	Examples of Applications
	Stochastic Graph Coloring
	Sensor Networks with Moving Targets
	Stochastic Vehicle Routing
	The Distributed Kidney Exchange Problem

	Related Work
	Distributed Coordination of Exploration and Exploitation
	DCOP with Utility Distributions
	Quantified DCOP with Virtual Adversaries

	Complete, Centralized Reasoning: Comp-E[DPOP]
	General Approach Based on Virtual Agents
	Distributed Pseudo-tree Generation
	Generating a Consistent Pseudo-tree
	Algorithm Properties

	Incomplete, Local Reasoning: Local-E[DPOP]
	Incomplete, Global Reasoning: Global-E[DPOP]
	Sharing Information about Dependencies on Random Variables
	Limiting the Propagation of Information
	Related Work on Resource-Constrained DCOP
	Influence of the Choice of the Pseudo-tree
	Hybrid E[DPOP] for Non-commensurable Evaluation Functions
	Complexity Analysis

	Equivalence Theorems
	Global-E[DPOP] = Local-E[DPOP]
	Central-E[DPOP] = Global-[EDPOP]

	Approximations by Sampling Scenarios
	Motivation and Challenges
	Independent Sampling
	Collaborative Sampling
	Consensus vs. Expectation

	Experimental Results
	Solution Quality/Complexity Tradeoff
	Partial Centralization and Privacy Loss
	Effects of Sampling

	Summary

	The FRODO 2 Platform
	Architecture
	Communications Layer
	Solution Spaces Layer
	Algorithms Layer

	Features
	Performance Metrics
	Graphical User Interface
	Websites

	Contributors

	Conclusion
	Bibliography
	Index
	Curriculum Vitae
	List of Personal Publications

