
May 12, 2004

Massachusetts Institute of Technology

Model-based Programming for
Cooperating Vehicles

16.412 Group Project

Seung H. Chung
Robert T. Effinger
Thomas Léauté
Steven D. Lovell

2

ModelModel

Cooperative Model-based Program Architecture

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Estimation and
Prediction

Activity and Path
Planning

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

3

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Estimation and
Prediction

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Cooperative Model-based Program Architecture

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

4

Forest Firefighting with Cooperative UAV’s

5

Cooperative Forest Fire Fighting Scenario

NFZ1
NFZ2

WaterA2WaterA1

WaterB1

WaterB2

Fire1

Fire2

Seeker UAV

Water UAV

No-Fly Zone

Legend:

Fire

Water

UAV Base

UAV Base

Plan Goal: Extinguish All Fires

Vehicles: One Seeker UAV (to image the fires)
One Water UAV (to extinguish fires)

Resources: Fuel & Water

Refueling Station

6

Commands

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

Sensor Observations

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Generative Activity
Planner: generates

activity plan from
mission plan

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Desired Sequence of
Mission States (Mission Plan)

Cooperative Model-based Program Architecture

7

Robert Effinger’s Contributions

1. Created Interface between the high-level planner
(Kirk) and the Path Planner (dStarLite)

(*jointly with Dan Lovell)

2. Created framework in Kirk to solve TPN as a
dynamic CSP

3. Implemented Dynamic Backtracking within Kirk

8

;; Macro to ask path-planner to update lower bound
;; (water-uav().dStarLite(10 15 20 30 40 50) [0,inf])

(overall fire-fighting strategy ()
(sequence

Interface Between Kirk and dStarLite

(choose
(sequence

(seeker-uav0.take-image(fire1) [0,10])
(seeker-uav0.take-image(fire2) [0,10]))

(sequence
(seeker-uav0.take-image(fire2) [0,10])
(seeker-uav0.take-image(fire1) [0,10])))

(choose
(sequence

(water-uav().drop-water(fire1)[0 , inf])
(water-uav().drop-water(fire2)[0 , inf]))

(sequence
(water-uav().drop-water(fire2)[0 , inf])
(water-uav().drop-water(fire1)[0 , inf])))

(parallel
(seeker-uav().return-to-base(base0)[0 , inf])
(water-uav().return-to-base(base0)[0 , inf])))

1. Choose which order to

image Fire 1 and Fire2

2. Choose which order to

drop water on Fire 1

and Fire2

Operator inputs detailed

mission scenario:

3. UAVs Return to Base

together

4. Update lower timebound

using path-planner

[0,6]

[0,45]

[0,20]

5
4

2
3

20
15

20
30

10
18

9

Solving a TPN as a Dynamic CSP

Decision A A1
A2 Decision B B1

B2
B1
B2

2 Main Functions:

1.) getNextDecisionStartNodes()

2.) deactivateNestedDecisionNodes()

Image Fire A then B

Image Fire B then A

Drop water on Fire A then B

Drop water on Fire B then A

WaterUAV Return to Base

SeekerUAV Return to Base

- Choice Node - Choice End Node - Partial Solution is purple

Start
End

10

Dynamic Backtracking Implementation

• Backtracks to the source of the problem

• Keeps variable assignments that aren’t part of the problem.

Decision A A1
A2 Decision B B1

B2
B1

ShortActivity [5 , 20]

ReallyLongActivity [70 , 100] OK_1[1,2]

OK_2 [1,2]

ReallyLongActivity[70 , 100]

ShortActivity [5 , 20]

Total

[0 , 75]

Decision C
C1
C2

11

Commands

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

Sensor Observations

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Desired Sequence of
Mission States (Mission Plan)

Cooperative Model-based Program Architecture

Generative Activity
Planner: generates

activity plan from
mission plan

12

Mission Plan to Activity Plan

Image
(Fire0)

Move
(Base, Fire0)

[250,500]

[30,50]

Move
(Lake, Base)

Get Water
(Lake)

Move
(Base, Lake)

Drop Water
(Fire0)

[130,160] [30,50] [170,240]

[30,50]

Take Image
(Fire1)

Drop Water
(Fire0)

Take Image
(Fire0)

[250,1000]

[30,50]

[30,50]

Move
(Fire0, Fire1)

[80,160]

[30,50]

Image
(Fire1)

13

Mission Plan to Activity Plan

NFZ1
NFZ2

Fire0

Fire1
Base

Legend:

Seeker UAV

Water UAV

No-Fly Zone

Fire

Water

UAV Base

Refueling Station

Image
(Fire0)

Move
(Base, Fire0)

[250,500]

[30,50]

Move
(Lake, Base)

Get Water
(Lake)

Move
(Base, Lake)

Drop Water
(Fire0)

[130,160] [30,50] [170,240]

[30,50]

Take Image
(Fire1)

Drop Water
(Fire0)

Take Image
(Fire0)

[250,1000]

[30,50]

[30,50]

Move
(Fire0, Fire1)

[80,160]

[30,50]

Image
(Fire1)

14

Generative Activity Planner

Uses temporal generative planner (augmented LPG) to generate an activity
plan from a mission plan

The planner must be able to achieve complex sequence
of goals (i.e. a mission plan represented as an STN).

15

LPG as a Generative Activity Planner

• Dynamic Problem Definition
– Update current state as

necessary
• Unavailable vehicles
• Reachable locations
• Distance between locations

– Enables closed loop replanning

• Dynamic Domain Definition
– Add mission plan as domain

operators
– Enables a search for an optimal

solution

• Plan with Flexible Time Bound
– Add upper bound to each actions

and check the temporal
consistency

LPG

Current State

Problem Domain

Mission Plan
(STN)

Causal Link of
Actions and

Corresponding
Durations

Plan with Flexible
Time Bound

16

Mapping Mission Plan into Domain Operators

(:durative-action take-image-seeker-uav0-fire0
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (not (act0-achieved)))

(at start (have-image seeker-uav0 fire0)))
:effect (at end (act0-achieved)))

(:durative-action drop-water-water-uav0-fire0
:parameters ()
:duration (= ?duration 0)
:condition (and (at start (not (act1-achieved)))

(at start (act0-achieved))
(at start (at water-uav0 fire0))
(at start (dropped-water water-uav0 fire0)))

:effect (at end (act1-achieved)))

Take Image
(Fire1)

Drop Water
(Fire0)

Take Image
(Fire0)

[250,1000]

[30,50]

[30,50]

17

Seung’s Contributions

1. Wrote the scenario in PDDL2.1 (PDDL+ Level-3 subset)
• Lack duration inequalities and continuous effects requires many

workarounds.

2. Generated a plan for the scenario using LPG
• Reaching the limits of LPG’s capability – required problem

description tweeking

3. Develop codes and methods necessary for the proof of
concept
• Gained some insights into a new approach to generative planning

4. Develop/Compile the STN interface necessary for the
architecture

18

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

Sensor Observations

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Generative Activity
Planner: generates

activity plan from
mission plan

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Desired Sequence of
Mission States (Mission Plan)

Commands

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Cooperative Model-based Program Architecture

19

Thomas Leaute’s Contributions

1. Wrote a comprehensive software interface with the Cloud
Cap simulator, exchanging TCP messages to read telemetry
and send commands

2. Created a Tactic-driven Cooperative Path Planner that uses
Mixed Integer Linear Programming to both plan paths and
execute a temporally flexible activity plan

3. Drafted a receding horizon planning framework that asks the
path planner to re-plan any time necessary

20

Path Planning within a Receding Horizon
Using Mixed Integer Linear Programming

Take Picture

[1, 7]

Go to LAKE

[6, Inf]

43
X

3

X
5

X
7

X
12

• Only plan within a limited time window

• Use fast roadmap path planner to estimate the remaining cost to go

• Result:
– Quick kinodynamic path planner that minimizes the total path cost

– Ability to incrementally replan as the knowledge of the environment is
updated.

21

Scheduling within a Receding Horizon
Using Mixed Integer Linear Programming

1 2 3 4

UAV1

UAV2

Go to FIRE1

[5, Inf]

Go to FIRE1

[10, Inf]
Take Picture

[1, 7]

Drop Water

[1, 5]

Stay at FIRE1

[0, 4]

Go to LAKE

[6, Inf]

Duration constraints → constraints Tmin < tj - ti < Tmax

“Go to G” activities → post-conditions X(tj) = XG

“Stay at P” activities → for all ti < t < tj: |X(t)-XP| < e

Nodes → time variables ti

22

Commands

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Generative Activity
Planner: generates

activity plan from
mission plan

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Desired Sequence of
Mission States (Mission Plan)

Sensor Observations

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Cooperative Model-based Program Architecture

23

Dan Lovell’s Contribution

• Cost map generating algorithm that uses D*-lite
– Generate a cost map for a given region

– Using D*-lite, can respond to dynamic environment using
local repair of the path

24

Generating Cost Maps with D*-lite

To create Cost To Go Map, execute many
D*-lite searches to locations in map
while saving old state

• Previous consistent nodes remain
consistent.
– Searches to consistent locations terminate

immediately.

• Previous priority queue needs to be
reordered for each new search location.
– Reordering priority queue ensures the next

search creates consistent nodes.

• How do you prevent too many queue
reorderings?
– Order of searches might matter
– Change heuristic function or tie breaking so

search paths wander more, covering more
area near the destination.

G

S1 Sn

S2

KinoPathPlanner wants to know cost to go for
locations inside some radius from its start

25

Generating Cost Maps with D*-lite

G

Cost map to be determined

G

Cost map to be determined

•The order in which you search
points in the cost map matters

•Large changes in euclidean
distance between start
locations could require much of
the priority queue to be
reordered

•Small Changes could cause
you to minimally reorder queue
but reorder many times since
each search wont cover as
much new terrain

Depiction of change in Priority Queue
after changing search’s start locations

S1

S2

High Priority

Low PriorityBefore

After

Color of location
determines how
“good” that location is

26

Cooperative Forest Fire Fighting Scenario

NFZ1
NFZ2

WaterA2WaterA1

WaterB1

WaterB2

Fire1

Fire2

Legend:

UAV Base

Step 1: SeekerUAV goes to confirm Fire1

Step 2: SeekerUAV goes to confirm Fire2

Step 3: WaterUAV commanded to go and extinguish Fire1

Seeker UAV

Water UAV

No-Fly Zone

Fire

Water

UAV Base

Refueling Station

27

Cooperative Forest Fire Fighting Scenario

NFZ1
NFZ2

WaterA2WaterA1

WaterB1

WaterB2

Fire1

Fire2

Legend:

UAV Base

Step 5: WaterUAV drops water on Fire1

Step 6: WaterUAV commanded to go and extinguish Fire2

Seeker UAV

Water UAV

No-Fly Zone

Fire

Water

UAV Base

Step 4: Generative Planner discovers WaterUAV needs to
get fuel and water before going to Fire1

Refueling Station

28

Cooperative Forest Fire Fighting Scenario

NFZ1
NFZ2

WaterA2WaterA1

WaterB1

WaterB2

Fire2

Legend:

UAV Base

Step 8: WaterUAV drops water on Fire2
Step 9: SeekerUAV takes pictures of the fire damage

Seeker UAV

Water UAV

No-Fly Zone

Fire

Water

UAV Base

Step 10: UAVs return to Base (and get fuel if needed)

Fire1

Step 7: Generative Planner discovers WaterUAV needs to
get water before going to Fire2

Refueling Station

29

Conclusions

• Model-based Programming: Encodes mission strategies or tactics at a
simple, intuitive level in terms of intended state evolutions.

• Dynamic Backtracking: Quickly generates an optimal mission plan
using best-first order or anytime depth first order.

• Activity Planning on Complex Sequence of Goals: Refines complex
sequence of goals (mission plan) into an actionable activity plan using
existing temporal generative planner.

• Strategy-driven Cooperative Path Planning: Incorporates a
kinodynamic cooperative path planner with the novel ability to design
control trajectories specified in temporally flexible plans.

• Receding Horizon Continuous Planners: Quickly adapts the optimal
plan as the environment and problem are perturbed using road map path
planning.

30

Mission Description in RMPL

(overall fire-fighting strategy
(sequence

(check fires
(choice

(tactic1)
(tactic2)

)
) [4,15]
(estinguish fires

(choice
(tactic3)
(tactic4)

)
)[5,10]
(take-pictures of damage

(choice
(tactic5)
(tactic6)

)
)[3,20]

)
)[12,45]

Operator inputs detailed

mission scenario:

2. Coordination and timing
constraints.

3. Non-Deterministic Choices

(tactic1
(parallel

(SeekerUAV1 fly to Fire2)[4,20]
(SeekerUAV2 fly to Fire1)[5,15]

)
)

1. Create an overall strategy
describing vehicle actions
and intended movements.

4. Concurrent and Sequential
Actions

31

Cooperative Model-based Program Architecture

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

estimate flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

predicts flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

predicts flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

32

Cooperative Model-based Program Architecture

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

predicts flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Control SequencerControl Sequencer

Model-based ExecutiveModel-based Executive

CommandsSensor Observations

Selects Feasible Mission Plan from Options

Activity and Path
Planning

Desired Sequence of
Mission States (Mission Plan)

Mission State
(Current & Predicted)

Fast Roadmap Path
Planner: quickly

predicts flight distance,
path, and time

Kinodynamic Path
Planner: generates a

path plan for each
motion activity

Generative Activity
Planner: generates

activity plan from
mission plan

Control Program
• Team mission

objectives &
coordination
constraints

• Team strategies &
tactics

• Options &
contingencies

System Model
• Terrain map
• Threats and assets
• Vehicle commands

and resource
models.

Kirk: searches Temporal Plan Network (TPN) to find a
feasible mission plan

Cooperative UAV’s
(Simulated using

Cloud Cap Autopilot)

Searches a grid map for
the shortest paths to
specified goals (using D*
Lite algorithm)

• Provides the control
sequencer and activity
planner with lower time
bounds on flight durations

• Allows the kinodynamic
path planner to plan
beyond its receding
horizon

(Dan)

Uses temporal generative planner (augmented LPG) to
generate an activity plan from mission plan. (Seung)

flyTo(vehicleA, pointY)
[10,∞]

goTo(vehicleA, pointY)
[8,∞]

goTo(vehicleA, point.X)
[5,∞]

stayAt(vehicleA, pointX)
[5,7]

fuelUp(vehicleA)
[5,7]

Uses Mixed Integer
Linear Programming
to generate path
plans and schedule
activities. (Thomas)

Given high-level mission goals and
strategies, selects an optimal
sequence of activities from a temporal
network with flexible time bounds.
(Robert) flyTo(A,Y)

[10, ∞]

takePict(A,Y)

[10, ∞]
flyTo(A,X) stayAt(A,Z)

