
Model-Based Diagnosis and
Execution on Rovers

Lars Blackmore
Steve Block
Emily Fox

Thomas Léauté

Rover Setup

Differential drive

Laser range scanner
Sonar sensors

Wheel encoders
(odometry)

Stereo camera

Inclinometer

GPS receiver

Compass

Antennas for wireless LAN

rFLEX
controller

rFLEX
screen

Sonar
control
board

Sonar sensors

SICK LMS
200 laser
scanner

Onboard PC

Firewire card

ttyR ports

θ

Stereo
camera

Serial port

Inclinometer

802.11a
wireless
network
adapter

Ethernet card

Left motor

Right motor

• Sensors give information
on motion and
environment.

• Onboard PC allows for
real-time computation and
command processing.

Figures from Seung Chung’s Project Description handout

Titan
• Titan is a model-based

executive deductive
controller
– Mode Estimation
– Mode Reconfiguration

• Some components are
“actuator stages” that take
commands from Titan

• Other components are
“sensor stages” that return
observations to Titan

• Components are linked to
form the complete system

Figures from Seung Chung and Oliver Martin’s Titan Tutorial

Simple Slip-Slide Scenario

• Initialize in all-stop state

• Command ‘go’ : successful driving

• Command ‘stop’ : successful stopping

• Command ‘go’ : slips

• Command ‘stop’ : successful stopping

• No command : starts sliding

• Command ‘go’ : successful driving

• Command ‘stop’ : skids

• Command ‘go’ : successful driving

• No command : slips

Model Schematic

Titan rFlexCommander motor wheel

Laser

EncoderrFlexEncoderGatherer

LaserInterface

batterybatterySensor

Model Implementation
• Modeling is based around transition diagrams

• Components are linked through relationships between
the models defining the component modes

ok

signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-moving

fail

nil
probability=0.0005

LaserInterface

comm-failed

observation=obs-failed
probability=0.002

command=cmd-reset

Mode

Transition

Guard

Model

Laser1.signal = LaserInterface1.signal

• The models of the ‘ok’ modes describe the correct
operation of each component

Model Implementation

• Guards on ALL transitions to nominal states
– Necessary for Mode Reconfiguration

• Avoid use of model variables as transition
guards in other components
– Insufficient for correct Mode Estimation

• Titan cannot handle disjunctive transition guards
– Creative modeling required

• Components may have multiple fault modes
– Some have defined models
– Always one “fail” mode to handle exceptions

Wheel1

rFlexEncoderGatherer
1

stopped
translation=mov-

stopped
rotation=mov-stopped

driving
translation=mov-moving
rotation=mov-moving

slipping
translation=mov-

stopped
rotation=mov-moving

probability=0.1

sliding
translation=mov-moving
rotation=mov-stopped

probability=0.1

fail
nil

probability=0.000001

ok
signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-
moving

fail
nil

probability=0.0005

ok
signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-
moving

fail
nil

probability=0.0005

LaserInterface1

comm-failed
observation=obs-

failed
probability=0.002

ok
charge=yes OR charge=no
current=yes current=no

fail
nil

probability=0.00
1

BatterySensor1

charged
charge=yes
current=yes

fail
nil

probability=.00000
1

Battery1

flat
charge=no
current=no

probability=0.5

stop
signal=mov-stopped

online=yes

go
signal=mov-moving

online=yes

comm-failed-stop
signal=mov-stopped

online=no
probability=0.003

fail
nil

probability=0.00
1

rFlexCommander

comm-failed-go
signal=mov-moving

online=no
probability=0.003

initialising
online=yes

ok
rotation=mov-stopped OR rotation=mov-moving
signal=mov-stopped signal=mov-moving

fail
nil

probability=0.001

Encoder1

ok
translation=mov-stopped OR translation=mov-
moving
signal=mov-stopped signal=mov-moving

fail
nil

probability=0.001

Laser1

ON
rotation=mov-

oving
signal=mov-moving

current=yes

Motor1

dead
rotation=mov-

stopped
current=yes

probability=0.002

fail
nil

probability=0.000001

OFF
rotation=mov-stopped rotation=mov-stopped rotation=mov-

stopped
signal=mov-stopped OR signal=mov-stopped OR signal=mov-moving

current=no current=yes current=no

Wheel

•A complete system would include separate models for each wheel

•Simplified system considers only one wheel

- Motion of rover and wheel are equivalent

•Direction of motion not considered

•Objective is to control the state of the wheel and hence the rover

AND cmd-go
online

stopped
translation=mov-stopped
rotation=mov-stopped

driving
translation=mov-moving
rotation=mov-moving

slipping
translation=mov-stopped
rotation=mov-moving
probability=0.1

sliding
translation=mov-moving
rotation=mov-stopped

probability=0.1

fail

nil
probability=0.000001

Wheel

AND cmd-go
online

AND cmd-stop
online

AND cmd-stop
online

rFlexCommander

• rFlexCommander component models the portion of the rFlex
board that transmits the commands from the PC to the motor.

• The “comm-failed” modes are resetable.

cmd-stop

cmd-go
stop

signal=mov-stopped
online=yes

go
signal=mov-moving

online=yes

comm-failed-stop
signal=mov-stopped

online=no
probability=0.003

fail

nil
probability=0.001

rFlexCommander

comm-failed-go
signal=mov-moving

online=no
probability=0.003

cmd-reset

initialising
online=yes

cmd-gocmd-stop

cmd-reset

Motor

• The motor component represents the actual motor

• Takes commands from the rFlex board.

• The motor component has a “dead” state representing the
failure mode when the motor is stopped and will not respond to a
“start moving” command from the rFlex board.

ON
rotation=mov-moving
signal=mov-moving

current=yes

Motor

dead
rotation=mov-stopped

current=yes
probability=0.002

AND cmd-go
online

AND cmd-stop
online

fail

nil
probability=0.000001

OFF
rotation=mov-stopped rotation=mov-stopped rotation=mov-stopped
signal=mov-stopped OR signal=mov-stopped OR signal=mov-moving

current=no current=yes current=no

Battery

charged

charge=yes
current=yes

fail

nil
probability=0.000001

Battery

flat
charge=no
current=no

probability=0.5

• The battery component models the power source of the rover.

• The battery component makes the overall system more realistic
and adds another condition on the state of the motor.

BatterySensor

ok

charge=yes OR charge=no
current=yes current=no

fail

nil
probability=0.001

BatterySensor

• The BatterySensor component models the way in which the
system reads charge on the battery.

• The output of this component is an observable to Titan allowing
it to deduce the state of the battery and motor when combined
with the observables from the rFlexEncoderGatherer and
LaserInterface observations.

Encoder

• The encoder models the shaft encoders on the wheels.

• Outputs are not directly observed because they are processed
through the rFlex board.

ok

rotation=mov-stopped OR rotation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Encoder

rFlexEncoderGatherer

• The rFlexEncoderGatherer component models the portion of the
rFlex board that receives the observations from the encoder.

•The output of this component is the actual observable in Titan.

ok

signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-moving

fail

nil
probability=0.0005

rFlexEncoderGatherer

Laser

• The laser models the laser unit on the front of the rover.

• The laser measures the rover’s translation.

• Readings of the laser indicate whether the rover is moving or is
stopped.

•The laser has its own interface component which is independent
of the rFlex board.

ok

translation=mov-stopped OR translation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Laser

LaserInterface

• The LaserInterface component models the interface between
the laser and the onboard PC.

• The output of this component, along with the output of the
rFlexEncoderGatherer and BatterySensor components, are the
actual observables in Titan.

ok

signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-moving

fail

nil
probability=0.0005

LaserInterface

comm-failed

observation=obs-failed
probability=0.002

command=cmd-reset

Facts
FACTS:

wheel1.rotation = motor1.rotation
wheel1.rotation = encoder1.rotation
wheel1.translation = sonar1.translation

laser1.signal = LaserInterface1. signal
encoder1.signal = rFlexEncoderGatherer1. signal
motor1.signal = rFlexCommander1.signal

motor1.command = rFlexCommander1.command
wheel1.command = motor1.command

rFlexCommander1.online= motor1.online
motor1.online = wheel1.online

motor1.current = battery1.current
battery1.charge = batterySensor1.charge

The facts define relationships between the various component
models.

Wheel

rFlexEncoderGatherer

stopped driving

slipping sliding

fail

ok

fail

ok

fail

LaserInterface

comm-
failed

ok

fail

BatterySensor

charged

fail

Battery

flat

stop go

comm-
failed-
stop

fail

rFlexCommander

comm-
failed-go

initialising

ok

fail

Encoder

ok

fail

Laser

ON

Motor

dead
fail

OFF

Wheel

rFlexEncoderGatherer

stopped driving

slipping sliding

fail

ok

fail

ok

fail

LaserInterface

comm-
failed

ok

fail

BatterySensor

charged

fail

Battery

flat

stop go

comm-
failed-
stop

fail

rFlexCommander

comm-
failed-go

initialising

ok

fail

Encoder

ok

fail

Laser

ON

Motor

dead
fail

OFF

Diagnosis and Recovery Scenarios

• Slipping

• Sliding

• Laser hardware failure

• rFlex communication failure

• Laser interface communication failure

• Battery failure

Slipping Scenario
Observations:

• Wheel encoder indicates rotation.

• Laser indicates no translation.

• Battery sensor indicates sufficient charge.

Wheel

stopped driving

slipping sliding

fail

Slipping Scenario
Observations:

• Wheel encoder indicates rotation.

• Battery sensor indicates sufficient charge.

• Laser indicates no translation.

Wheel

stopped driving

slipping sliding

fail

Diagnosis: rover slipping

Recovery From Slipping

Goal: rover driving

1) Find path to goal Wheel

stopped driving

slipping sliding

fail

Recovery From Slipping

Goal: rover driving

1) Find path to goal

2) Suggest command

Wheel

stopped driving

slipping sliding

fail

Recovery From Slipping

Goal: rover driving

1) Find path to goal

2) Suggest command

3) Execute command

Wheel

stopped driving

slipping sliding

fail

Recovery From Slipping

Goal: rover driving

1) Find path to goal

2) Suggest command

3) Execute command

4) Repeat steps 2 and 3
until goal is reached

Wheel

stopped driving

slipping sliding

fail

Demonstration on Rover Testbed

VIDEO

QuickTime™ and a
DV - PAL decompressor

are needed to see this picture.

Laser Hardware Failure Scenario

Command:
• Command wheel to start driving.
Observations:
• Wheel encoder indicates rotation.
• Battery sensor indicates sufficient charge.
• Laser indicates no translation.

Initial Diagnosis: rover slipping

Laser Hardware Failure Scenario

• Mode Reconfiguration tries to recover from
slipping state by stopping wheel and driving
again.
– Laser still indicates no motion

• After three attempts, a new diagnosis becomes
more probable:
– Laser was in ‘fail’ mode from the beginning

• Mode Estimation determines that wheel is in
‘driving’ mode as required
– No reconfiguration necessary

rFlex Communication Failure
Scenario

• Very similar to laser hardware failure.
• Titan makes several attempts at resetting the

commander.
• Eventually deduces that motor has been burnt

out from start.

Demonstration on Rover Testbed

VIDEO?QuickTime™ and a
DV - PAL decompressor

are needed to see this picture.

Full Slip-Slide Scenario

• Tested in Titan providing observations and
commands manually

• Successfully estimates state of rover

• Suggests correct recovery trajectory

• Implemented on rover
– Physical situation can however not be

simulated

Other Scenarios

• Diagnosis is simple
– Sensors can detect failure directly

• Reconfiguration is either simple or impossible
– Reset LaserInterface
– Charge battery (cannot be done by PC)
– Burnt-out motor (irrecoverable)

• Off-line testing in Titan successful
• Demonstration on rovers in progress

– Necessary interfaces in place
– Update of onboard Titan code required

Conclusion

• Successfully developed a model of ATRV
rovers in Titan
– Incorporated complex features
– Touched boundaries of current Titan

capabilities

• Developed test scenarios
• Tested feasible scenarios on rover testbed

– Incorporated sensor interface software

Questions

