

Model-Based Diagnosis and
Execution on Rovers

Lars Blackmore
Steve Block

Thomas Léauté
Emily Fox

5th December 2003

1 Introduction
Our team has been working on the use of Titan to automatically estimate the state

of a rover and recover from potential failures. The behavior of a rover is not only
dependent on the behavior of its internal components; it is also affected by the
environment in which it is evolving.The onboard computer running Titan should be
able to detect failure modes related to non-nominal interactions with the environment,
diagnose them (and hence discriminate them from internal component failures), and
try to recover from them. We have been focusing on the development of a model for
the rover that would enable us to diagnose and reconfigure the rover, subject to
“environmental” failures (slipping and sliding) as well as internal component failures.

After a brief introduction to Titan and the rovers (section 2), we will describe the
overall scenario we chose, which has been the goal and guideline of our project
(section 3). We will then describe the four major model design steps we took, each
step solving issues raised by the previous step and raising new issues due to the
increasing complexity of the model (sections 4 to 7). We will then present in detail the
results we got from the final model, tackling the initial scenario goal and even
expanding the possibilities of the model to several other complex scenarios
(section 8). We will eventually sum up the lessons we learned from the successive
modeling issues we had to face, along with the strengths and weaknesses of our final
model and of the tools we have been using (section 9).

2 Overview of Technology

2.1 Titan
Titan is a model-based executive controller that was used to estimate the state of

the rover, diagnose possible failures from the observations output by the sensors
onboard the rover, and suggest appropriate actions in order to recover from those
failures when possible.

Titan uses a plant model of the rover in order to account for the behavior of each
of the internal components and their interactions one with each other. This model can
be represented by a combination of non-deterministic finite automata, an example of
which is shown in Figure 1.

Figure 1. Example of Representation of a Model
by a Combination of Automata

[Courtesy Seung Chung and Oliver Martin]

Figure 1 illustrates the combination of automata associated with the model for a
two-switch simple electrical circuit. Each component of the circuit (Switch1, Switch2
and OR-gate) corresponds to an automaton in the model. The automaton is composed
of states and transitions between these states. A state can either be a nominal state or a
failure state. The automaton can enter a failure state from any other state by taking a
probabilistic transition. Non-probabilistic transitions into nominal states are assigned
guards, which are logical propositions depending on the variables of the model. Such
a transition can be taken at any moment in time when the assignment to the variables
satisfies its guard. Each state is also assigned a model, which is a list of assignments
to the variables that characterizes that state. The variables in the model can either be
commands issued to the rover, observables output by the rover, or internal dependent
variables to which the user does not have direct access.

In order to be usable by Titan, the model is first implemented in LISP, and then
fed into a compiler to produce a “MOF-file”, which is a description of the model
encoded in MPL (Model Programming Language). MPL is a programming language
originally developed at NASA Ames to be used by Livingstone, a model-based
diagnosis system designed to monitor and control spacecraft and exploration rovers.
Titan then uses this MOF-file for diagnosis and recovery.

Titan has two functions, and hence can be split into two main components: the
“Mode Estimation” and “Mode Reconfiguration” components. “Mode Estimation”
takes as inputs the values of the observables and commands of the system, and
estimates the most probable state configurations of the different components that are
consistent with these observations. Assuming the rover is in the most probable
configuration outputted by “Mode Estimation”, “Mode Reconfiguration” then
suggests a command that should be issued to the rover in order to achieve a given goal
state. Each time a command is executed, the “Mode Estimation” re-estimates the state
of the system, using the new values of the observables, and hands out the most
probable state to “Mode Reconfiguration” which iteratively suggests another
command until the goal is reached. This cycle is illustrated in Figure 2.

Figure 2. Information Flow Chart through Titan’s Components

As illustrated in Figure 2, “Mode Reconfiguration” issues commands that are fed
into the model to have it take the transitions from one state configuration to another,
during the “propagation step”. In theory, the command is also sent in parallel to the
rover: in the completely autonomous mode, Titan actually controls the rover by
having it execute the commands issued by “Mode Reconfiguration”. In a safer semi-
autonomous mode, Titan displays the suggested commands and the user manually
executes them on the rover. The sensors installed on the rover then output a set of
measurements that can be directly observed by Titan through an automated Titan-
rover software interface. “Mode Estimation” then checks that these observations fit
with the predictions from the model, re-estimating the most probable state of the
system if the outputs from the sensors and the model are inconsistent.

Mode Estimation Mode Reconfiguration State Estimate

Goal

Model

Command Observation

2.2 Brief Description of the Rovers
The rovers we worked on are ATRV-Jr rovers, as shown in Figure 3. The rovers

have a large variety of sensors that allow the user (and Titan) to monitor the state and
the motion of the system. The sensors we actually considered are the laser scanner
and the sonar sensors to determine the velocity of the rover, and the wheel encoders to
measure the rotation of the wheels. We also used a battery sensor, which is not
mentioned on the figure because it observes the internal state of the system, whereas
the previously mentioned sensors measure the state of the environment around the
rover. Note that the rover has a differential drive, but it was decided only to consider
one wheel in our model. This is based on the assumption that all four wheels move
together, thus limiting the model of the rover to straight line motion.

Figure 3. ATRV-Jr Sensors and Actuators
[Courtesy Seung Chung]

The rover is controlled by an onboard computer that sends commands to the
actuators via the rFlex board. The rFlex board is an embedded controller at the
interface between the motor and the PC. It also gathers information form various
sensors and sends it to the PC. Some sensors, however, are connected directly to the
PC. The overall internal structure of the rover is presented in Figure 4.

Differential drive

Laser range scanner
Sonar sensors

Wheel encoders
(odometry)

Stereo camera

Inclinometer

GPS receiver

Compass

Antennas for wireless LAN

Figure 4. Overall Internal Structure of the Rovers
[Courtesy Seung Chung]

In our consecutive modeling approaches, we tried to come up with models that
captured the behavior of components relevant to the scenario in which we wanted
Titan to be able to estimate and reconfigure. The description of this baseline scenario
is provided in the following section.

rFLEX
controller

rFLEX
screen

Sonar
control
board

Sonar sensors

SICK LMS 200
laser scanner

Onboard PC

Firewire card

ttyR ports

θ

Stereo camera

Serial port

Inclinometer

802.11a wireless
network adapter

Ethernet card

Left motor

Right motor

3 The Slipping/Sliding Diagnosis Scenario
The environment-dependent failure that needed to be modelled was the case when

the rover’s motion relative to the environment is inconsistent with the motion of the
wheels, either because the rover is slipping or sliding. This situation is described in
the following figure:

Figure 5. Four Motion Modes to be Diagnosed

Figure 5 represents the four motion modes the onboard PC should be able to
discriminate. The first mode is the “stopped” mode, when the wheels are not rotating
and the rover is at rest. The second mode is the “driving” mode, in which the wheels
are rotating and the rover is moving. Those two modes are nominal modes,
corresponding to consistent wheel and rover motions.

The two following modes are non-nominal modes, since the wheel motion is
inconsistent with the rover motion. The “Slipping” mode represents the configuration
in which the wheels are rotating, but the rover is still because the wheels are slipping.
The similar “Sliding” mode represents the configuration when the wheels are not
rotating but the rover is moving, presumably because of the slope, and the rover is
sliding.

In order to be able to discriminate between those four modes, the onboard PC
requires data from two independent sensors. The first sensor is the odometer,
measuring the rotation speed of the wheels. A second sensor is required to sense
whether the rover is moving or not. There are several sensors available on the rover
that can be used in this purpose. The sonar sensors are designed to allow the PC to
“see” obstacles or objects around the rover and to evaluate their shape and distance
from the vehicle. Variations in these distance measurements can be interpreted as
indicators of motion of the rover (assuming that the rover evolves in a motionless

The rover is at rest, ready to move.

The rover is moving, following a
trajectory provided by the path
planner.

The rover cannot move because its
wheels are slipping.

The rover is moving even though it
was not commanded

Stopped

Driving

Slipping

Sliding

environment, and especially that no other moving rover is in view of the sonar
sensors). The laser scanner installed at the front of the truck can also be used in a
similar way. This sensor measures the distance from the rover to the closest object in
varying directions within the range of the scanner. If the onboard PC observes
variations in the distance to the closest object in a given direction, it can infer from
these observations that the rover is moving. Eventually, an evaluation of the rover
velocity can be made using a more complex combination of hardware and software
components. SLAM is a software component that derives a map of the environment
and the position of the rover within this environment from the reading on various
sensors. In particular, it uses odometry to update the position of the rover, so it is not
independent from the motion of the wheels, and this method might not be appropriate
to evaluate the velocity of the rover in case of slipping or sliding failures.

As a consequence, the first basic model of the rover included two sensor
components: the “sonar” and the “encoder” (standing for the odometer). The third
component is the “wheel”. The aim of the mode evaluation problem is for Titan to
infer the state of this third component from the outputs of the two sensors. The aim of
the mode reconfiguration problem is to send appropriate actions to this third “wheel”
component in order to have it transition from a failure state back to a nominal state.
Figure 6 illustrates this basic first model.

Figure 6. Flow Diagram for the Output -> Input Approach

This model scheme was the starting point of our work. As progress was made in
modeling the system, several other components were added in order to account for the
complexity of the rover. But several consecutive drastic changes were also made to
implement the model in MPL in order to overcome fundamental modeling constraints
imposed by Titan. These different approaches to the problem are presented and
discussed in the following sections.

wheel

Titan

sonar

encoder

observables

commands

4 First Design Approach:
Output -> Input Approach

4.1 Description of the Model
This first method used to implement the basic model illustrated in Figure 6. As

suggested by this figure and by the name of the approach, each component was first
considered to be a “black box” whose “output” was the “input” of the following
component. In this MPL approach, the “outputs” of a component are the variables in
the state models, and the “inputs” are the guards on the transitions between these
states. They are linked one to the other using relationships listed in the model facts. In
the case of the rover the output of the “wheel” component is made equal to the guards
on the transitions of the two sensor components, as illustrated in Figure 7. The MOF
file for this model can also be found on the enclosed CD and is entitled “version A”.

Note that this model is a very simple model; it has no notion of “slipping” nor
“sliding” and cannot be used to diagnose those two failures. But it is the first step we
took, and it allows us to underline a major flaw in the design approach, as discussed in
the “Critique” section. The “persist” transitions are not shown for clarity.

Figure 7. Output -> Input High Level Model Diagram

FACTS:
wheel.output=sonar.command
wheel.output=encoder.command

stop

fwd

fail

nil
probability=0.06

Wheel
fwd

output=goingfwd

stop

output=stopped

stopped

goingfwd

fail

nil
probability=0.01

Encoder

fwd

output=obsfwd

stop

output=obsstop
 stopped

goingfwd

fail

nil
probability=0.01

Sonar

fwd

output=obsfwd

stop

output=obsstop

In the approach described in Figure 7, the MPL model has one single input, which
is put as a guard on the transitions between the nominal states of the “wheel”
component. A command “stop” makes the wheel transition to the “stop” state, and a
“fwd” command makes it transition to the “fwd” state. The third state is a “fail-mode”
state, with a given probability of occurrence (it describes unexpected hardware wheel
failures). Each of the ok-mode states has a model linked to the guards on the
transitions of the two sensor components. For instance, the guard on the transition
from the “stop” to the “fwd” state of the “encoder” component is satisfied if and only
if the wheel is in the “fwd” state (or on the “fail” state, which has no model).

The two observables are encoder.output and sonar.output. Giving the values of
these two variables to Titan enables it to estimate the state of the system. For
example, if the two observables have the same value “obs-stop”, Titan will estimate
the most probable state of the system, in which the two sensor components are in their
respective “stop” states. Then Titan will diagnose that the most probable state for the
wheel that is consistent with the two states of the two sensors is the “stop” state, and it
infers that the rover is at rest. If on the contrary Titan had been given two different
observations from the two sensors, it would have inferred that the wheel was in the
“fail” mode, because it has no model, so it is the only state of the wheel consistent
with the observations.

4.2 Critique of the Approach
In fact, Titan is not able to estimate the state of this model: if we give Titan the

command “fwd” and the observations “sonar.output = obs-fwd” and “encoder.output
= obs-fwd”, Titan estimates that both sensors have transitioned to their “fail” state.

This error is due to a conceptual flaw in the model, as underlined in Figure 8.

Figure 8. Trivial Output -> Input Two-Component Model

Consider the canonical sensor/actuator model on Figure 8, where the initial
configuration of the system is “off - off”. If Titan is given the command

OFF

output=off

ON

ouput = on

Actuator

cmd=stop

cmd=go

OFF

obs=obs-off

ON

obs=obs-on

fail

nil
probability=0.005

Sensor

cmd=on

cmd=off

“Actuator.cmd=go” and the observation “Sensor.obs=obs-on”, then asked to estimate
the state of the system, it will first infer from the command that the actuator has
transitioned into its “ON” state. But Titan will not infer from this that the sensor has
also transitioned into its “ON” state, because the guard on this transition is not met in
the current system state. Since the observable is inconsistent with the model of the
“OFF” state of the component, and no guarded transition is possible, Titan infers that
the component is in its “fail” state, i.e. broken.

This modeling approach is therefore fundamentally flawed. Because of this,
another modeling method was considered, the “Output <-> Output” approach, in
which the guards on transitions are no longer linked to the output of other component
This second approach is described in next section.

5 Second Design Approach:
Output <-> Output Approach

5.1 Description of the Model
This approach was chosen to solve the problem of mode estimation described in

the previous section. In this model the only transition guards allowed are the guards
corresponding to external commands given to Titan. Instead of linking components by
creating a relationship between the “output” of one and the “input” of the other (as in
the previous “Output -> Input” approach), we chose an “Output <-> Output” approach
in which components are linked by their outputs only, and no guard is put on the
transitions.

In addition a “motor” component was added in order to increase the detail of the
model. This allows successful diagnosis of a greater range of failures.

Figure 9 illustrates the general idea of the second approach.

motor

Titan

sonar

encoder

observables

commands

wheel

R
E

L
A

T
IO

N
SH

IP
S

Figure 9. Flow Diagram for the Output <–> Output Approach

This approach solves the estimation issue presented in the previous section. Given
the values for the observables, Titan is able to estimate the state of the two sensors.
The “outputs” of these two sensors are linked to outputs from the two other
components, so that Titan can infer the state of the wheel and the motor directly from

the state of the sensors, without any extra propagation step as required in the first
approach. Transition guards appear only in the motor component, and allow the user
to command the motor to go from one nominal mode to another. If Titan’s first
estimation of the state of the system is inconsistent with the previous state and the
command given to the motor, Titan infers that at least one of the components has
failed and estimates the most probable failure.

A more detailed diagram for this second model is presented on Figure 10 and the
corresponding MOF file is the version B of our model and can be found on the
enclosed CD.

Figure 10. Output <-> Output High Level Model Diagram

stopped
translation=mov-

stopped
rotation=mov-stopped

driving
translation=mov-

moving
rotation=mov-moving

slipping
translation=mov-

stopped
rotation=mov-moving

sliding
translation=mov-

moving
rotation=mov-stopped

fail

nil
probability=0.001

Wheel

stopped

rotation=mov-stopped
observation=obs-stopped

moving

rotation=mov-moving
observation=obs-moving

fail

nil
probability=0.01

Encoder

stopped

translation=mov-stopped
observation=obs-stopped

moving

translation=mov-moving
observation=obs-moving

fail

nil
probability=0.01

Sonar

OFF

rotation=mov-
stopped

ON

rotation=mov-
moving

fail

nil
probability=0.005

Motor

cmd-stop

cmd-go

FACTS:
 wheel1.rotation=motor1.rotation
 wheel1.rotation=encoder1.rotation
 wheel1.translation=sonar1.translation

This approach solves all the problems encountered in the previous approach as far
as mode estimation is concerned. Mode Estimation is able to go through the following
scenario and its ability to estimate the corresponding configurations is demonstrated.

a) Initial state: the rover is at rest

b) Command “go” => successful driving

c) Command “stop” => successful stopping

d) Command “go” => slips

e) Command “stop” => successful stopping

f) Spontaneously starts sliding (no command)

g) Command “go” => successful driving

h) Command “stop” => slides

i) Command “go” => successful driving

j) Spontaneous loss of traction

Mode Estimation also handles the cases when the wheels appear to stop or start
rotating spontaneously without being commanded to; Mode Estimation then
diagnoses a hardware failure (either a motor failure or a sensor failure, depending on
the probabilities).

5.2 Critique of the Approach

The model described here does not model certain transitions between wheel
modes which are in fact possible in the real rover. These include the possibility of a
slipping wheel spontaneously gaining traction and moving into a driving mode
without a command being issued. The second, analogous scenario, is that of a sliding
wheel spontaneously stopping without a command being issued.

It seemed initially that this was a simple case of the model not being detailed
enough, and that unguarded, probabilistic transitions from slipping to driving and
from sliding to stopped could be added It was later determined however that this is
fundamentally impossible within the constraints of Titan’s current capabilities. This is
discussed in detail in section 9.

Although Mode Estimation is able to carry out correct diagnosis given the
commands and observables, Mode Reconfiguration is unable to suggest appropriate
action in order to recover from a “slipping” or a “sliding” mode. This is due to a
conceptual mistake in the modeling approach. Mode Reconfiguration is unable to
handle unguarded transitions. This problem is discussed below.

Consider the initial configuration when the rover is slipping: the wheel is in its
“stopped” mode, the motor is “OFF”, the sonar is “stopped” and the encoder is
“stopped”. We give Mode Reconfiguration the trivial goal “the wheel component is in
its ‘driving’ mode”, that is we want to have the wheels start driving. The transition in
the wheel component between the “slipping” and the “stopped” modes is unguarded.
Mode Reconfiguration reasons that no command need be issued for this transition to
take place. For the motor component to make the transition between its OFF and ON
state as required, the command ‘GO’ must be issued. However Mode Reconfiguration
maintains a concept of an ordering of the system components. Therefore if the wheel
appears first in this ordering, Mode Reconfiguration concludes that it is unable to
force the change in the system state and reports that no command is required.

The ordering of system components is visible in this extract from the MOF file
created by the compiler. It contains the following lines in the “Variable Definition”
section:

INSTANCE ENCODER1
 VARIABLE ENCODER1.MODE OF-TYPE STATE WITH-RANGE ENCODER-MODE WITH-NUM 3
[…]
 INSTANCE MOTOR1
 VARIABLE MOTOR1.MODE OF-TYPE STATE WITH-RANGE MOTOR-MODE WITH-NUM 4
[…]
 INSTANCE WHEEL1
 VARIABLE WHEEL1.MODE OF-TYPE STATE WITH-RANGE WHEEL-MODE WITH-NUM 1
[…]
 INSTANCE SONAR1
 VARIABLE SONAR1.MODE OF-TYPE STATE WITH-RANGE SONAR-MODE WITH-NUM 2

Manual editing of these numbers may avoid this problem (and proved to solve the
problem in this case), but to do so is to do Titan’s job, and moreover in more complex
models it might be difficult to see what the correct assignment is. Titan would have
put the components in the correct order if they were not all at the same level, i.e. the
outputs of some components were inputs to others. But this Output -> Input approach
does not handle mode estimation, as was pointed out in the corresponding section.

To solve this issue, we considered a new design approach in order not to use
unguarded transitions. This model is described in the following section.

As an aside, the compilation phase also misses all unguarded transitions to
nominal modes; these need to be added by hand to the MOF file.

6 Third Design Approach:
Distributed Command Output <-> Output Approach

6.1 Description of the model
The two previous approaches were “high level” approaches because they modeled

the states of the various components in a “functional” way. For instance, the encoder

component had two separate states to describe its nominal behavior in which it was
either outputting “the wheel is rotating” or “the wheel is not rotating”. But the
transitions between those two nominal states were unguarded and caused Mode
Reconfiguration to fail. In this third modeling approach, those two nominal states
have become one single nominal state with disjunctive models. This point of view is
more realistic and faithful to the hardware, so that it can be considered a more “low
level” approach.

However, all nominal states cannot be melted into one, because we would then
have no control over the transitions between these states (in fact, there would be no
transitions to nominal states). For instance, the “wheel” component requires separate
“stopped” and “driving” states, because the aim of the problem is to specify these
states as goal states. So, in order to stick to the idea of a single nominal state, the
“sliding” and “slipping” states are now considered as actual fail-mode states, with
probabilistic transitions into them. In order to recover from these states, we need
transitions to the nominal state; these transitions must be guarded (to avoid
reconfiguration problems described in the previous approach), and the guard must not
depend on “outputs” from other components (to avoid estimation problems described
in the first approach). A solution is to use the external command as a guard on these
transitions, which is the reason why this approach is called a “distributed command”
approach.

In order to be more faithful to the hardware and to demonstrate our ability to deal
with more complex models, we also decided to model the rFlex board. The rFlex
board has two main functions: it collects data from the sensors and sends them to the
onboard PC, and it also takes commands from the PC and transfers them to the
appropriate actuators. This is the reason why the rFlex board was split into two
different components, one “rFlexGatherer” gathering data from the sensors, and one
“rFlexCommander” receiving commands from Titan. Eventually, in order to limit the
complexity of the model, we decided to split the “rFlexGatherer” component further
into two components (one for each sensor). The general flow diagram and the detailed
transition diagram of this model are represented respectively in Figure 11 and Figure
12. The MOF file for this model is also available on the supplied CD; it is called
“version C”.

Figure 11. Flow Diagram for the Distributed Command Approach

wheel

Titan

rFlexSonarGatherer

rFlexEncoderGatherer

observables

motor

sonar

encoder

rFlexCommander

R

 E

 L

 A

 T

 I

O

 N

 S

 H

 I

P

S

commands

Figure 12a. Distributed Command Model Diagram

 cmd-stop OR
 cmd-reset

 cmd-go
CmdStop

signal=mov-stopped
CmdFwd

signal=mov-moving

Stuck_Stop
signal=mov-stopped
probability=0.005

fail

nil
probability=0.001

rFlexCommander

cmd-reset

Stuck_Fwd
signal=mov-moving
probability=0.005

cmd-reset

ok

encoder-signal=mov-stopped OR encoder-signal=mov-moving
observation=mov-stopped observation=mov-moving

fail

nil
probability=0.001

rFlexEncoderGatherer
ok

sonar-signal=mov-stopped OR sonar-signal=mov-moving
observation=mov-stopped observation=mov-moving

fail

nil
probability=0.001

rFlexSonarGatherer

Figure 12b. Distributed Command Model Diagram
(continued)

ok

rotation=mov-stopped OR rotation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Encoder

FACTS:
 wheel1.rotation = motor1.rotation
 wheel1.rotation = encoder1.rotation
 wheel1.translation = sonar1.translation
 sonar1.signal = rFlexSonarGatherer1.sonar-signal

encoder1.signal = rFlexEncoderGatherer1.encoder-signal
motor1.power = rFlexCommander1.signal
motor1.command = rFlexCommander1.command
wheel1.command = motor1.command

fault mode

nominal
mode

NB:
Within a component
there are transitions to
the fail state from all
other states, but these are
not shown for clarity.
Also all states have
persist transitions
(not shown).

Key:

 cmd-go

stopped
translation=mov-stopped
rotation=mov-stopped

driving
translation=mov-moving
rotation=mov-moving

slipping
translation=mov-stopped

rotation=mov-moving
probability=0.5

sliding
translation=mov-moving
rotation=mov-stopped

probability=0.5

fail

nil
probability=0.001

Wheel
 cmd-go

 cmd-stop

 cmd-stop

OFF
rotation=mov-stopped
power=mov-stopped

ON
rotation=mov-moving
power=mov-moving

fail

nil
probability=0.0001

Motor

dead
rotation=mov-stopped

probability=0.005

 cmd-go

 cmd-stop

ok

translation=mov-stopped OR translation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Sonar

As a general rule, the low-level single-OK-mode approach has been enforced for
the “passive” components, i.e. the “sensors” (“rFlexGatherers”, “encoder’ and
“sonar”). For the “active” components (“rFlexCommander”, “wheel” and “motor”)
the functional high-level approach prevails, with distributed commands as guards on
the transitions. The “rFlexCommander” component has two very special fail-mode
states modeling hardware failures when the rFlex board is not responding, and the
commands “cmd-go” and “cmd-stop” fail to change the state of the system. It takes a
new “cmd-reset” command to recover from those failure states. Those two failure
states are very special, because they are probabilistic states, but we do not want them
to be reachable from any other state: the “Stuck_Stop” state should only be reachable
from the “CmdStop” state. But a probabilistic fail state is by definition reachable from
any other state with the same probability. So the MOF file output by the compiler was
edited and all undesired transitions to those two failure states were erased by hand.

We have also added a failure state to the “motor” component: the “dead” state is
an unrecoverable failure mode modeling the case when the motor is broken and
cannot rotate anymore.

6.2 Critique of the Approach
There are still a few problems with this design approach. One of them is that it

was assumed that the onboard PC could send a “soft” reset command to the rFlex
board, and that this command would only affect the “rFlexCommander” component.
This is not realistic, and we fixed this in our fourth approach of the problem. It seems
at first glance that we would only need to add the “cmd-reset” command to the guards
of the “actuators” to make them disjunctive guards. This was not carried out on this
model, because there turned out to be a major problem with the disjunctive reset
guard on the “rFlexCommander” component.

Titan simply does not handle disjunctive guards. Any transition with a disjunctive
guard in the lisp file is split by the compiler into two separate transitions in the MOF
file. Then Titan only considers one of the two transitions, and ignores the second one.
The design approach described in the following section deals with this issue by
creating new states in order to avoid the use of disjunctive-guard transitions.

However, this model works perfectly well if we ignore the possibility to reset the
rFlex board. It is able to estimate correctly the state of each component as we go
through the test scenario described in section 4.1. A few reconfiguration tests were
made and Titan was able to suggest the appropriate action to recover from the
considered failures. More complete and systematic reconfiguration tests were made
on the last version of the model, which is described in the following section.

7 Fourth and Latest Design Approach:
The Two-Step-Reset Approach

7.1 Brief Description of the Model
This model approach was created in order to be able to reset the rFlex board while

avoiding the use of disjunctive transitions that create problems presented in the
previous section. The issue was that we were not allowed to have two transitions with
different guards (“cmd-stop” and “cmd-reset”) between the two same states
(“CmdFwd” and “CmdStop”). To solve this problem, we created an intermediate state

through which the “rFlexCommander” component must transition before it can return
to a nominal mode. This is equivalent to decomposing the reset procedure into a two-
step process. The first step is to actually send the “cmd-reset” command to have the
“rFlexCommander” component go into an intermediate state called “initializing”
state. Then, as a second step to the reset procedure, the “rFlexCommander” can be
sent a command (“cmd-go” or “cmd-stop”) to have it go back into a nominal state of
our choice (respectively “go” or “stop”).

Another issue was the fact that the motor and the wheel should be “frozen” in
their present state as soon as the rFlex board gets “stuck” and stops responding to
commands sent by the onboard PC. This problem is solved by adding a new model
variable to the “rFlexCommander” component. This variable is then used as a
conjunctive guard in the “motor” and the “wheel’ to make sure that no nominal
transition can be taken as long as the “rFlexCommander” is offline, which only
happens when it is in one of its two “stuck” states.

The flow diagram corresponding to this latest module is presented on Figure 13.

Figure 13. Flow Diagram for the Two-Step-Reset Approach

As it can be seen comparing Figure 11 to Figure 13, there has also been a couple
of changes in the components since the previous version of the model. The first
change is that the “sonar” and “rFlexSonarGatherer” components have been replaced

wheel

Titan

laser interface

rFlexEncoderGatherer

observables

motor

laser

encoder

rFlexCommander

commands

command

battery sensor

battery

R

E

L

A

T

I

 O

N

S

H

I

 P

S

observable

by a “laser” component and a “laser interface” component. The decision to make this
change was motivated by the suggestion by the TAs that it might be easier to derive
the translation motion measurement from the laser than from the sonar. Furthermore,
this allowed us to introduce one more recovery possibility, since the laser is
independent of the rFlex board and can be sent a reset command via the “laser
interface” component, which stands for the ttyR link between the laser and the
onboard PC. Two other components were also added to the model in order to account
for the possibility of battery discharge or failure. The “battery” component is linked to
the motor so that the motor can only be rotating if the battery charge level is high,
which can be observed by Titan through the output of the “battery sensor” component.

7.2 Extensive Description of the Model
Since this version of the model is the final version we finally came up with, each

component will now be described and explained in detail. The diagram of this model
is presented in Figure 14. The .lisp and MOF files can be found on the enclosed CD as
version D.

Figure 14a. Transition Diagram for the Two-Step-Reset Approach

 AND cmd-go
 online

stopped
translation=mov-stopped
rotation=mov-stopped

driving
translation=mov-moving
rotation=mov-moving

slipping
translation=mov-stopped
rotation=mov-moving

probability=0.1

sliding
translation=mov-moving
rotation=mov-stopped

probability=0.1

fail

nil
probability=0.000001

Wheel1

 AND cmd-go
 online

 AND cmd-stop
 online

 AND cmd-stop
 online

cmd-reset

 cmd-stop

 cmd-go
stop

signal=mov-stopped
online=yes

go
signal=mov-moving

online=yes

comm-failed-stop
signal=mov-stopped

online=no
probability=0.003

fail

nil
probability=0.0001

rFlexCommander

comm-failed-go
signal=mov-moving

online=no
probability=0.003

cmd-reset

initialising
online=yes

 cmd-go cmd-stop

Figure 14b. Transition Diagram for the Two-Step-Reset Approach (continued)

ok

rotation=mov-stopped OR rotation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Encoder1

ok

translation=mov-stopped OR translation=mov-moving
signal=mov-stopped signal=mov-moving

fail

nil
probability=0.001

Laser1

ok

signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-moving

fail

nil
probability=0.0005

rFlexEncoderGatherer1
ok

signal=mov-stopped OR signal=mov-moving
observation=obs-stopped observation=obs-moving

fail

nil
probability=0.0005

LaserInterface1

comm-failed

observation=obs-failed
probability=0.002

Figure 14c. Transition Diagram for the Two-Step-Reset Approach (continued)

FACTS:
 wheel1.rotation = motor1.rotation
 wheel1.rotation = encoder1.rotation
 wheel1.translation = sonar1.translation

 laser1.signal = LaserInterface1. signal

encoder1.signal = rFlexEncoderGatherer1. signal
motor1.signal = rFlexCommander1.signal

motor1.command = rFlexCommander1.command
wheel1.command = motor1.command

rFlexCommander1.online = motor1.online
motor1.online = wheel1.online

motor1.current = battery1.current
battery1.charge = batterySensor1.charge

fault mode

nominal
mode

NB:
Within a component
there are transitions to
the fail state from all
other states, but these are
not shown for clarity.
Also all states have
persist transitions
(not shown).

Key:

ok

charge=yes OR charge=no
current=yes current=no

fail

nil
probability=0.001

BatterySensor1

charged

charge=yes
current=yes

fail

nil
probability=0.000001

Battery1

flat
charge=no
current=no

probability=0.5

ON
rotation=mov-moving
signal=mov-moving

current=yes

Motor1

dead
rotation=mov-stopped

current=yes
probability=0.002

 AND cmd-go
 online

 AND cmd-stop
 online

fail

nil
probability=0.000001

OFF
rotation=mov-stopped rotation=mov-stopped rotation=mov-stopped
signal=mov-stopped OR signal=mov-stopped OR signal=mov-moving

current=no current=yes current=no

7.2.1 rFlexCommander
• “stop” mode: nominal mode modeling the case when the rFlex board is

commanding the motor to stay still. The component can take the transition
into the “go” mode when it is commanded to go forward.

• “go” mode: nominal mode corresponding to the rFlex board telling the motor
to rotate. The rFlexCommander can go back to the “stop” mode through a
transition guarded by a “cmd-stop” command issued by Titan.

• “comm-failed-stop” and “comm-failed-go” states: failure states representing
special fault-modes. They can be reached with a probability of 0.003, but not
from any other mode, as is the default case. “comm-failed-stop” can only be
reached from “stop”, and “comm-failed-go” from the “go” mode. To impose
this, the MOF file has to be edited to remove all undesired probabilistic
transitions into these two modes. These modes stand for the case when the
rFlex board stops responding, and the system is stuck stopped or stuck going
forward, depending on the state of the system before the hardware failure.
The two modes impose “online=no”, so that all nominal transitions on the
wheel and the motor are forbidden, and both components are bound to stay in
their present modes (or go into a probabilistic failure mode). We can recover
from these two failures by sending a “cmd-reset” command to the
rFlexCommander, which then takes the transition into its “initializing” mode.

• “initializing” mode”: contrived approach used to avoid disjunctive transitions
guards. It also has a physical interpretation: it represents the mode of the
rFlex board as it is being reset. The reset procedure is a two-step process
consisting of a first “cmd-reset” command, and then a “cmd-go” or “cmd-
stop” command. This procedure is described in further details in the next
“Critique” section.

• “fail” mode: generic fail mode. Assigned a very low probability designed to
handle unexpected behavior or the component.

7.2.2 Wheel
The “wheel” is a component corresponding to the physical wheel of the rover, but it

can also be interpreted as representing the overall motion of the Rover, as used in
diagnosis and recovery.

• “stopped” and “driving” modes: the two nominal modes of the component.
They stand for the two nominal motion of the rover. The transitions between
these two modes are guarded by conjunctive clauses involving the command
issued by the PC and also the “online” variable. This last variable is used to
make sure the two guards are not satisfied when the rFlex board is not
responding.

• “slipping” and “sliding” modes: failure modes representing the motion
configuration of the rover when it is slipping and sliding respectively.
Assuming no hardware failure, these states are diagnosed by Titan when the

observations provided by the two sensors are inconsistent. Their probability is
rather high in order to make sure they are a more probable diagnosis than a
hardware failure. They are both recoverable: the slipping rover can try to
regain traction by taking the transition to the “stopped” mode, and the rover
can also start “driving” again to regain traction when it is sliding. Note that no
direct reconfiguration from “slipping” to “driving” or from “sliding” to
“stopped” is allowed in this model; this point is briefly discussed in the
beginning of section 5.2, and further explained in the end of section 9.1.

• “fail” mode: generic unexpected failure mode with very low probability.

7.2.3 Motor
• “ON” mode: nominal mode in which the motor is rotating as commanded by

the rFlex board.

• “OFF” mode: nominal mode of the motor standing for the case when the
motor is not rotating. The transitions between these two nominal modes are
guarded by the command from the PC and also by the “online” variable
output by rFlexCommander, to make sure the motor is stuck in its current
mode as soon as the rFlex board is no longer responding to the commands
issued by the PC.

• “dead” mode: hardware motor failure: the motor is commanded to rotate by
the rFlex board, the battery level is sufficient, but the motor is broken and
does not rotate. This failure is not recoverable.

• “fail” mode: generic unexpected failure mode.

7.2.4 Encoder, Laser, BatterySensor, rFlexEncoderGatherer and
LaserInterface

These four components are very similar because they are all passive sensors, except
for LaserInterface, which has a reset capability.

• “ok” mode: this is the single nominal mode in which the sensor behaves
correctly, outputting the correct mode of the component or environmental
parameter it monitor. The encoder monitors the motion of the wheel while the
laser detects the translational motion of the rover. The rFlexEncoderGatherer
and LaserInterface components represent the interface between the sensor
hardware and the onboard PC. The BatterySensor monitors the charge level of
the battery.

• “fail” mode: generic unexpected failure mode, standing for an unconstrained
hardware failure.

• “comm-failed” mode: this mode is particular to LaserInterface. It models a
failure of the ttyR link between the laser and the PC. This failure is
recoverable by a reset command.

7.2.5 Battery
This component is very similar to LaserInterface, except its second failure mode

(standing for a “flat” or “dead” battery) is not recoverable. Note that the battery
considered here is only the battery supplying power to the motor. We are not modeling
the power supply necessary to run the rFlex board and the sensors.

7.3 Critique of the Approach
At first sight, it seems the solution found to the conjunctive guards issue is a step

backwards: the “online” variable that was created is an “output” of the
“rFlexCommander” component, and is used as a guard on transitions in all the other
“active” components. So this goes back to the “Output -> Input” design approach, which
was proven to be flawed. However, the rFLexCommander does use dependent variables
to tie its modes to the modes of the motor, so Mode Estimation will still function
correctly. Use of the “online” variable is a poor approach in general, but the component
has been carefully constructed to avoid any problems. As a result, this method has proved
successful at implementing a reset function without the use of disjunctive transition
guards. This capability is demonstrated in the following mini-scenario.

Assume Titan has diagnosed that the “rFlexCommander” component was in its
“comm-failed-go” state, i.e. the rFlex board has stopped responding as the rover was
going forward. The “online” variable is equal to “no”, so that all nominal transitions in
the actuators are blocked and all actuators are stuck in their present nominal state
corresponding to the rover going forwards. The reset command is then sent to the rFlex
board, so that the “rFlexCommander” component enters its “initializing” state. The value
of the “online” variable then changes to “yes”, so that all nominal transition guards in the
actuators become satisfiable. If, at the very same instant, the command sent to the rover is
equal to “cmd-stop”, then those guards become satisfied, but the transitions are not taken,
because Titan needs another propagation step to do so. But this is fine, because it models
the fact that the rFlex board is still unable to pass the commands from the onboard PC to
the actuators while it is being re-initialized. In order to complete this re-initialization, the
rFlex board is eventually sent a “stop” or “go” command. This command is also
distributed to the other actuators, which are then able to take the corresponding transition
in one single propagation step.

Another last but important critique of this design approach is that the MOF file
output by the compiler still needs editing in order to assign the number 1 to the
“rFlexCommander” component, as described in a previous section. This is required to
ensure Titan’s ability to suggest the reset command when we try to recover from a rFlex
board communication failure. The MOF file also has to be edited in order to delete all
undesired probabilistic transitions into the two special stuck states of the
“rFlexCommander” component.

8 Diagnosis and Recovery Scenarios

8.1 Introduction
This section describes a number of diagnosis and recovery scenarios which were

designed to demonstrate the strengths and weakness of the rover model and the Titan
system. Results of tests and conclusions are also presented.

8.2 Scenarios

Slipping and Sliding 8.2.1
Laser Hardware Failure 8.2.2
Laser Interface Communication Failure 8.2.3
rFlex Commander Communcation Failure 8.2.4
Dead Motor 8.2.5
Discharged Battery – from rest 8.2.6
Discharged Battery – while moving. 8.2.7

8.2.1 Slipping and Sliding
In this scenario the rover’s components are all functioning correctly. Due to

environmental conditions, the rover’s wheels lose traction at certain instants. This causes
the rover to slip and slide. Titan’s task is to diagnose whether the rover is slipping, sliding
or driving and suggest the correct sequence of commands to issue in order to recover to
the desired goal state.

As described previously, successful diagnosis and recovery in this scenario is the
baseline aim of the project. The results of testing are shown in Figure 15.

The results show that in all cases Titan is able to determine the state of the wheel, and
hence the rover, correctly. Given a goal state, Titan is able to suggest a sequence of
commands to achieve that goal. For example, in the case where the wheel is slipping,
Titan determines that first the wheels must be stopped to regain traction, and then the ‘go’
command should be issued to start driving.

The scenario above could be extended to include various sequences of slipping and
sliding. For example on an incline, the rover could start sliding spontaneously. In all
cases where the sequences are possible given the transitions in the wheel component
model, Titan is successful in both diagnosis and recovery.

There are certain sequences which are not consistent with the wheel model. For
example, the wheel automaton cannot make a transition between slipping and driving;
this transition would prevent Mode Reconfiguration from working as described in section
X. Hence a scenario where the wheel makes this transition without a stop command
followed by a go command being issued would cause Mode Estimation to fail. In this
case Titan would determine incorrectly that the wheel had entered the unmodelled ‘fail’
state.

This, however, is a fundamental limitation of Titan as discussed in section 9.

Description Observations State Estimated by Titan Requested Goal Command from Titan

Initialise with rover stopped, all

components in ok mode.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

All components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Rover has
traction and moves successfully.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

All components are OK

Wheel1=STOPPED

Send STOP command to

rFlexCommander1

Command rover to stop. Rover stops
successfully.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

All components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Rover has
insufficient traction and wheels slip.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Moving

Wheel1 is SLIPPING
Motor1 is ON

All components are OK

Wheel1=DRIVING

Send STOP command to

rFlexCommander1

Command rover to stop. Rover stops
successfully.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

All components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1
Command rover to move. Rover has

regained traction and moves
successfully.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

All components are OK

Wheel1=STOPPED

Send STOP command to

rFlexCommander1

Command rover to stop. Rover has
insufficient traction and slides.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Stopped

Wheel1 is SLIDING
Motor1 is OFF

All components are OK

Wheel1=STOPPED

Send GO command to

rFlexCommander1

Command rover to move. Rover
drives and regains traction.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

All components are OK

Wheel1=STOPPED

Send STOP command to

rFlexCommander1

Command rover to stop. Rover has
traction and stops.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

All components are OK

Wheel1=STOPPED

No command necessary

No command. Rover stays

stationary.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

All components are OK

None

None

Figure 15. Results of Slip and Slide Scenario Testing

8.2.2 Laser Hardware Failure

This scenario involves a rover where the laser component has failed in such a way
that it always produces a ‘stopped’ signal regardless of the motion of the rover. This is
different from the failure where the laser interface to the PC has a communication failure,
and is a more difficult diagnosis problem because the PC cannot detect the failure
directly.

In the scenario the rover starts from rest. The goal throughout is that the rover is
moving. Titan’s aim is to estimate the state of the rover and determine which commands
should be issued in order to achieve this goal. Figure 16 shows the results of testing this
scenario.

The results show that at first Titan correctly determines that the ‘go’ command
should be issued. Once this occurs, the rover does in fact move. Due to the faulty laser
component, however, the observations show that the rover is stationary despite the fact
that its wheels are turning.

Mode Estimation decides that the most likely diagnosis is that the wheels are
slipping. This is the correct diagnosis given the observations; the probability of the
wheels slipping is far greater than the probability of a laser component failure.

Titan determines that the recovery trajectory from slipping to driving, the goal state,
is to issue the stop command followed by the go command. When this is done, however,
the faulty laser gives a ‘stopped’ signal, and once more Mode Estimation determines that
the most likely diagnosis is that the rover is slipping.

This cycle repeats itself a number of times. However during this process, Titan
retains a tree of possible trajectories to the current possible states of the system.
Eventually Titan deduces that it is more likely that the laser component had been in the
‘failed’ state from the beginning of the test than that the wheels slipped every time the go
command was issued.

At this point, Titan determines that the rover is in fact driving. Since this was the
original goal state, no command need be issued.

This scenario therefore demonstrates Titan’s capability to track multiple trajectories
through the system’s state space and deduce the most likely assignment of modes. Unlike
the slip and slide scenario, where the observations and commands uniquely determine the
state of the wheel (ignoring the unmodelled ‘fail’ states which have very low
probabilities), this scenario requires Titan to use the probabilistic model of the system
along with multiple observations over time to make the correct diagnosis. This is a
strength of the Titan system.

Description Observations State Estimated by Titan Requested Goal Command from Titan
Initialise with rover stopped. Laser

component has failed so that it always
detects that the rover is stopped. All

other components ok.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to drive. Rover drives
successfully, but laser component

continues to give STOPPED signal.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Moving

Wheel1 is SLIPPING
Motor1 is ON
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send STOP command to

rFlexCommander1

Command rover to stop. Rover stops
successfully.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to drive. Rover drives
successfully, but laser component

continues to give STOPPED signal.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Moving

Wheel1 is SLIPPING
Motor1 is ON
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send STOP command to

rFlexCommander1

Command rover to stop. Rover stops
successfully.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to drive. Rover drives
successfully, but laser component

continues to give STOPPED signal.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Moving

Wheel1 is SLIPPING
Motor1 is ON
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send STOP command to

rFlexCommander1

Command rover to stop. Rover stops
successfully.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF
Laser1 is OK

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to drive. Rover drives
successfully, but laser component

continues to give STOPPED signal.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

Laser1 is FAILED
All other components are OK

Wheel1=DRIVING

No command necessary

Figure 16: Results of Laser Hardware Failure Scenario Testing

8.2.3 Laser Interface Communication Failure

In this scenario, the laser interface develops a communication fault with the PC. This
form of fault can be observed directly by the onboard PC.

Again, the goal throughout is for the rover to be driving. The results of testing are
shown in Figure 17.

This is a simple scenario, because the communication failure is directly observable
by the onboard PC. Titan makes the correct diagnosis and determines that the reset
command should be sent to the laser interface.

Description Observations State Estimated by Titan Requested Goal Command from Titan
Initialise with rover stopped. All

components ok.
BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

LaserInterface1 is OK
All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to drive. Rover drives
successfully, but a communication

failure has occurred between the laser
interface and onboard PC.

BatterySensor1: Charged
LaserInterface1: Failed
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

Laserinterface1 is FAILED
All other components are OK

Wheel1=DRIVING

Send RESET command to

LaserInterface1

Send RESET command to laser
interface. Laser interface resets and

communication reinitialises
successfully

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is OFF

LaserInterface1 is OK
All other components are OK

Wheel1=DRIVING

No command necessary

Figure 17. Results of Laser Interface Communication Failure Scenario

8.2.4 rFlexCommander Communication Failure

In this scenario the rFlex board has a communication failure and hence stops
responding to commands from the onboard PC.

The rover starts at rest, with all other components functioning correctly. The goal
throughout is for the rover to be driving. Titan’s task is to diagnose the communication
fault and determine the correct recovery trajectory. The results are shown in Figure 18.

After the first ‘go’ command, the observations show that neither the wheels are
turning nor is the rover moving. At this stage there are a number of consistent mode
assignments. One set of assignments involves a dead motor. Another involves a dead
battery, but also a failed battery sensor, since the battery sensor indicates that the battery
has charge.

The most likely assignment, however, involves the rFlexCommander being in the
‘comm-failed-stop’ mode. This mode models the state where the commander is stuck
commanding the motor to stop, which is in fact the case in this scenario.

The results show that Mode Estimation correctly determines the latter case as being
the most probable, and Mode Reconfiguration states that the reset command should be
sent to the rFlex board. Resetting the rFlex board takes it into the initialising mode. Mode
Estimation determines that this has happened, and issues the ‘go’ command, which is the
correct recovery strategy.

Description Observations State Estimated by Titan Requested Goal Command from Titan

Initialise with rover stopped, all
components in ok mode.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is STOP
All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move.

rFlexCommander board has a
communication failure and does

not respond.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is
COMM-FAILED-STOP

All other components are OK

Wheel1=DRIVING

Send RESET command to

rFlexCommander1

Send RESET command to

rFlexCommander board. Board
goes into initialising mode.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is
INITIALISING

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Rover

moves successfully.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is DRIVING
Motor1 is ON

All components are OK

Wheel1=DRIVING

No command necessary

Figure 18: Results from rFlexCommander Failure Scenario

8.2.5 Dead Motor

In this scenario, the rover has a dead motor, which will not turn the wheel even if
supplied with current.

As in the previous scenario, the rover starts from rest, and the goal throughout is to
be in the ‘driving’ state. Results are shown in Figure 19.

After the initial ‘go’ command is issued, the observations in this scenario are exactly
the same as in the rFlex communication failure scenario. As such, Titan estimates that the
most likely cause is a communication failure in the rFlex board, and decides that resetting
the board is the best recovery strategy.

After the reset cycle has been carried out, however, the rover still fails to respond to a
‘go’ command. In the rFlexCommander model, the transition between the ‘initialising’
mode and the ‘go’ mode occurs with a 100% probability if the ‘go’ command is issued.
Hence for the initial diagnosis of an rFlex communication failure to be correct, the
rFlexCommander must be in the ‘go’ mode after the reset. Without some other failure,
this is inconsistent with the observations. Hence Titan determines that the most likely
diagnosis is that the motor was dead from the beginning.

Given this diagnosis, Titan correctly reports that no recovery is possible since the
motor cannot return to a nominal mode.

Description Observations State Estimated by Titan Requested Goal Command from Titan
Initialise with rover stopped.

Motor is dead and will not move
even when supplied current. All

other components ok.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is STOP
All components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Due to

dead motor, rover remains
stationary.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is
COMM-FAILED-STOP

All other components are OK

Wheel1=DRIVING

Send RESET command to

rFlexCommander1

Send RESET command to

rFlexCommander board. The
board resets.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

rFlexCommander1 is
INITIALISING

All other components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Rover
remains stationary due to dead

motor.

BatterySensor1: Charged
LaserInterface1: Moving
RFlexEncoderGatherer: Moving

Wheel1 is STOPPED
Motor1 is FAILED

rFlexCommander1 is
GO

All components are OK

Wheel1=DRIVING

No possible recovery

Figure 19. Results of Dead Motor Scenario Testing

8.2.6 Discharged Battery – from rest

In this simple scenario, the battery is in a critical state (‘flat’). It is assumed that when
the battery is in this state, the motors cease to function although the electronic systems
continue as normal, enabling Titan to function.

The goal in this case is for the rover to be driving. The results are shown in Figure
20. Diagnosis in this case is simple as the battery sensor detects the state of charge of the
battery directly.

Titan does in fact estimate the state of the rover correctly, and determines that no
recovery is possible.

8.2.7 Discharged Battery – While Driving

This scenario is exactly the same as the previous one, except in this case the battery
reaches a critical level of charge while the rover is driving. As before, the goal is for the
rover to be driving. The results are shown in Figure 21.

It can be seen from the results that Mode Estimation believes that the final state of
the system is very different from the actual state. The reason for this becomes apparent
upon analysis of the model. Before the battery failure, the rover is in the state where the
motor is moving, the wheel is driving and the battery is charged. After the failure, in the
real rover, the motor is stopped, the wheel is stopped and the battery is flat. Mode
Estimation, however, thinks that the wheel is slipping whilst the battery sensor and the
encoder have both failed.

In both the wheel and motor component models, the transitions between DRIVING
and STOPPED and ON and OFF respectively have guards which require the command to
the overall system to be the ‘stop’ command. This is required for Mode Reconfiguration
to work properly, as discussed in section 9. Because of these guards, the ‘desired’
transitions from DRIVING to STOPPED and from ON to OFF when the battery fails
cannot happen, since no ‘stop’ command is issued.

Instead, Mode Estimation assigns the most likely set of consistent modes; however to
be consistent with the observations this requires a number of component failures. This
results in a mode estimate which is far from reality. This is a fundamental limitation of
the Titan system which is explored in section 9.

Description Observations State Estimated by Titan Requested Goal Command from Titan
Initialise with rover stopped.

Battery is flat.

BatterySensor1: Flat
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

Battery is FLAT
All other components are OK

Wheel1=DRIVING

No possible recovery

Figure 20: Results from Dead Battery (from rest) Scenario

Description Observations State Estimated by Titan Requested Goal Command from Titan

Initialise with rover stopped.
All components are ok.

BatterySensor1: Charged
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is STOPPED
Motor1 is OFF

Battery1 is CHARGED
All components are OK

Wheel1=DRIVING

Send GO command to

rFlexCommander1

Command rover to move. Rover

moves successfully.

BatterySensor1: Charged
LaserInterface1: Driving
RFlexEncoderGatherer: Driving

Wheel1 is DRIVING
Motor1 is ON

Battery1 is CHARGED
All other components are OK

Wheel1=DRIVING

No command necessary

Battery reaches critical level.

Motor cannot continue to operate.
Rover stops.

BatterySensor1: Flat
LaserInterface1: Stopped
RFlexEncoderGatherer: Stopped

Wheel1 is SLIPPING
Motor1 is ON

Battery1 is CHARGED
Encoder1 is FAILED

BatterySensor1 is FAILED
rFlexCommander1 is GO

LaserInterface1 is OK

Wheel1=DRIVING

Figure 21: Results from Dead Battery (while moving) Scenario

8.3 Integration with ATRV Testbed

8.3.1 Introduction
In order to demonstrate the capability of the model and Titan on real rovers, the

code was integrated with the ATRV testbed. Once this had been carried out, certain
scenarios could be tested on the rovers themselves.

8.3.2 Integration

Titan Software
It was desired to run the Titan software on the rover’s onboard PC. This required

an extensive update of the software previously installed on the rover, which was
carried out by the project TA’s. The user could interface with Titan via a wireless
SSH connection made to a nearby PC. On this PC commands could be sent to Titan,
and diagnosis results from Titan could be seen.

Observations
The observations from the laser interface, battery monitor and wheel encoders

were available. In order that Titan could use these observations, a number of
interfaces had to be written. These mapped intervals in the continuous range of sensor
values to discrete variables in Titan, such as ‘obs-moving’ or ‘obs-stopped’. In
addition the failure of the laser interface could be detected. These interfaces were
developed by the project TA’s.

Commands
No direct interface was made between the commands suggested by Titan running

on the rover and the commands issued to the rover. The link here was made by the
user, who commanded the rover in a certain way depending on the command
suggested by Titan.

This method was in fact necessary to allow successful testing and to prevent
damage to the rovers. Before the final link can be made, it is necessary to extend the
capabilities of the diagnosis and recovery system as well as handling a number of
additional interface issues.

8.3.3 Results

The following scenarios were tested on the rover.

 a) A simple slipping and recovery scenario
 b) A laser hardware failure scenario

In both cases Titan behaved as it had in off-line testing. The results were recorded on
video and are included on the accompanying CD-ROM.

8.4 Conclusion
A number of scenarios were devised and tested in order to demonstrate the

strengths and weaknesses of the Titan system and the rover model design.

It was shown that the system was able to carry out effective diagnosis and
recovery in the slip and slide scenario, which was the overall aim of the project. The
capabilities of Titan and the model were also shown in other relatively complex
scenarios. Some scenarios, however, revealed inherent flaws in the Titan system.
These flaws are discussed in detail in section 9.

It was shown that the diagnosis and recovery system could be integrated with the
ATRV test bed, and that the system behaved as off-line tests had predicted.

9 Lessons Learned: Titan’s Limitations
The design and implementation of a Titan model to capture the basics of the

Rover’s dynamics has highlighted several significant shortcomings in Titan’s
capabilities. Each of these problems is discussed in general terms below, allowing
Titan’s limitations to be stated explicitly.

9.1 Mode Reconfiguration
Titan’s Mode Reconfiguration module is used to obtain the commands required to

cause transition to a system state that includes the specified goal modes.

In the following discussion, it is convenient to introduce the requirement that all
transition guards are conjunctive clauses. The theory underlying the Titan software
includes no such restriction, so generality is maintained if multiple transitions are
permitted between a given pair of modes.

Transition guards may include both command and dependent variables, but Mode
Reconfiguration’s influence is limited to the suggestion of commands to achieve the
goal state. For this reason, a goal state must necessitate only transitions in which all
requirements on dependent variables are already met. Mode Reconfiguration then
returns the command values required to complete the satisfaction of the transition
guard. Since the persist transition of mode from which the transition takes place is
guarded by the negation of the required command, the command suggested by Mode
Reconfiguration will force a change of mode.

Consider, however, the case where the goal state requires a transition that
includes no command variables. In this case, if the requirements on the dependent
variables are already met, Mode Reconfiguration returns (1), indicating that whilst
the transition is possible, nothing need be done to make it take place. However, the
guard on the persist transition of the starting mode is also met, so the desired
transition cannot be forced. Such transitions are therefore beyond Titan’s control and
Mode Reconfiguration is unable to issue commands to guarantee transition to the goal
state.

It is meaningless for the user to specify a fail-mode as a goal and if all goals are
ok-modes, Titan will select a goal state that does not include any fault-modes.
Therefore, to avoid this issue, we require only that transitions to nominal modes
include at least one command variable.

Mode Reconfiguration’s behavior is logical, but becomes problematic when we
consider the entire system. As mentioned in section 5.2, if the transition to the goal
state involves any mode transitions with guards that do not include command
variables, Titan is liable to deduce that the entire system is out of its control. This is
because Mode Reconfiguration maintains a concept of the system’s “chain of
command”, that is the pathway of information flow. When looking for the command
required to reconfigure the system, it considers components in the order in which they
appear on this chain. If a transition without a command variable guard is considered
first, then Titan will deduce that the command required to “trigger” the change of
state is (1), that is “do nothing”. To maintain generality therefore, these problematic
transitions must be avoided in all components.

Mode Reconfiguration requires that the guards on all transitions to nominal
modes contain at least one external command.

This fundamental requirement is the reason why the wheel component does not
include transitions from SLIPPING to DRIVING and from SLIDING to STOPPED.
Whilst unlikely in practice, both transitions are physically possible and it would seem
obvious to model them with an unguarded transition with a low probability. However,
to do so would violate the modeling rule derived above. When faced with a goal of
DRIVING for the wheel mode, Mode Reconfiguration will suggest no action for
recovery from the SLIPPING mode. This is indeed logical; there is indeed a finite
probability that the wheel will spontaneously regain traction. However, Titan’s
usefulness would be greatly improved if Mode Reconfiguration were able to deduce
that a guaranteed path, via the STOP mode, also exists, and suggest commands to
follow this recovery trajectory instead.

9.2 Conflicts Between Mode Estimation
and Mode Reconfiguration

For a given a system state, the mode transition probabilities supplied in the Titan
model determine the a priori probabilities for transition to all possible subsequent
states. Titan’s Mode Estimation module calculates the posteriori probabilities for
transition to the states that satisfy a given set of commands and observations.

When evaluating the guard constraints on the mode transitions required to reach a
potential subsequent state, Mode Estimation evaluates dependent variables at the
current state. As a result, transitions guarded by constraints met only in the
subsequent state cannot be taken.

Some systems, such as the Rover’s dynamics, exhibit a clear flow of information
along certain “chains” of system components. It is therefore most intuitive to model
these systems using components linked from output to input. That is, the dependent
variables defining a component’s modes are used as guards on transitions in other
components. Due to the above result, however, Mode Estimation is unable to reason
correctly on models of this type. Instead, components must be linked by compatibility
constraints between their dependent variables.

Mode Estimation requires components to be connected by compatibility
constraints between the dependent variables that define their modes.

This modeling constraint appears to be fairly insignificant when considered in
isolation. However, its conflict with the constraint imposed by Mode Reconfiguration
seriously limits Titan’s capabilities.

Specification of goal modes requires that at least one component has distinct
nominal modes. In addition, components with probabilistic transitions guarded by
constraints that do not include command variables are required to represent any
transition that is not commanded, such as any kind of failure. Consider a system with
these features, at a time-step at which no command is issued. Transitions to un-
modeled (and therefore unwanted) failure modes aside, a set of observations may
force a component to undergo a probabilistic transition to a fail-mode. This in turn
forces other components to change mode in order to maintain compatibility (due to
the ME constraint). Whilst these other components may have compatible nominal
modes, the transitions to these modes cannot take place because no command was
issued (due to the MR constraint). As a result, these components are forced to enter
failure modes, giving unexpected, undesired and unrealistic operation.

For example, consider the Rover system model, which includes a battery
component with an ok-mode OK and a fault-mode FLAT. Assume the Rover is
initially driving with all modes nominal and that no un-modeled failure occurs. If the
battery sensor detects low charge, then the battery must enter the FLAT mode, even if
no command is issued. As a result of compatibility requirements, the motor cannot
remain in its ON mode and this in turn prevents the wheel from remaining in its
DRIVING mode. The obvious “correct” operation is that the motor enters its OFF
mode and the wheel its STOPPED mode. However, these transitions are to nominal
modes and are therefore guarded, so cannot be taken unless a cmd-stop is issued.
As a result, both the motor and wheel are forced to enter their FAIL modes and the
model has failed to capture the true behavior of the system. This situation was
demonstrated in section 8.2.7.

9.3 Disjunctive Transition Guards
Titan is unable to handle disjunctive transition guards and instead follows the

logic mentioned above, whereby each transition guard is presumed conjunctive and
multiple transitions are permitted between pairs of modes. However, the current
version of Titan considers only one of these transitions, making representation of
disjunctive guards impossible. This means that no transition between a pair of modes
can result from more than one command. There are obvious cases in which this
behavior is desired and frequently it is in fact required due to the modeling constraint
imposed by Mode Reconfiguration.

Take for example the Rover’s rFlexCommander. The most logical
implementation of a reset function would involve transitions from all nominal modes
to the STOP mode, each guarded by cmd-stop. This means that the transition from
GO to STOP is effectively guarded by (or cmd-stop cmd-reset).
Furthermore, the ON to OFF transition in the motor and the DRIVING to STOPPED
transition in the wheel require the same guard due to the modeling constraint imposed
by Mode Reconfiguration. This limitation prevents a simple implementation of a reset
function and this is the reason for the rather obscure controller model developed for
the Rover. This model makes use of a rather artificial INITIALISING mode, as well as
the dependent online to avoid the problem.

9.4 Suggested Solutions
The fact that Mode Reconfiguration returns (1) when faced with trying to

achieve a mode transition whose guard does not contain a command variable is
perfectly logical. The problematic requirement on the way in which a system is
modeled could be avoided however, if Titan were able to consider the union of all
required commands. In this case, even if some transitions were beyond Titan’s
control, it could nonetheless issue those commands required for other transitions. This
would allow correct functionality of a model with guards only on transitions between
the nominal modes of input components, where other components were linked
through compatibility of model variables. This is a very “neat” solution and a model
of this type accurately reflects the way in which changes propagate through the
physical system.

The modeling constraint imposed by Mode Estimation, however, is more
fundamental and significantly more difficult to overcome. For Mode Estimation to
reason correctly on models where dependent variables are used in guards on

transitions in other components, it must be able to consider multiple time steps. In
order to meet the guard constraint on a given transition, Mode Estimation would have
to look for an intermediate system state in which the relevant dependent variables take
on the correct values. This leads to an iterative approach and an enormous increase in
complexity. But to achieve this, Mode Estimation would have to do the job of Mode
Reconfiguration. This would violate the fundamental division of tasks within Titan,
and would require a significant redesign of the software.

The limitations caused by the conflicts between the requirements of Mode
Estimation and Mode Reconfiguration are best avoided therefore by the change to
Mode Reconfiguration proposed above. In addition, this allows the use of the “neat”
system model described above, where command variables are present only on the
system’s input devices.

Titan’s inability to handle disjunctive guards is purely an issue of implementation.
The theory in Mode Reconfiguration handles both disjunctive and conjunctive
operators in conditional logic and the change should be reasonably straightforward.

10 Conclusion and Acknowledgements
During this project, we have had to learn how to use Titan and to build models for

a complex system, putting into practice and deepening our comprehension of what we
had learned in Course 16.413 about propositional logic and model-based systems. We
were faced with several successive issues relative to the use of Titan and its
limitations, and we had to elaborate strategies and new design approaches to solve
these issues and overcome obstacles.

We eventually designed a model that is able not only to estimate and reconfigure
the state of the rover following our initial simple slip-slide scenario, but also to
diagnose several other internal hardware failures, and to recover from those failures
when possible. With the help of the TAs, who provided us with the necessary
software interfaces, we were able to test and demonstrate our model on the actual
rovers, simulating various failures from which Titan proved to be able to recover
successfully.

We would like to thank the TAs for their advice and for sharing with us their
expertise on Titan and the rovers: Stano, Seung, Ollie and Brad. Their help proved to
be very valuable to understand subtle details about Titan that could explain the issues
we were facing. They also enabled us to test our model directly on the rovers by
providing the interfaces between Titan and the on-board sensors.

