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Abstract

Agile autonomous systems are emerging, such as un-
manned aerial vehicles (UAVs), that must robustly per-
form tightly coordinated time-critical missions; for ex-
ample, military surveillance or search-and-rescue sce-
narios. In the space domain, execution of temporally
flexible plans has provided an enabler for achieving
the desired coordination and robustness. We address the
challenge of extending plan execution to under-actuated
systems that are controlled indirectly through the setting
of continuous state variables.
Our solution is a novel model-based executive that takes
as input a temporally flexible state plan, specifying in-
tended state evolutions, and dynamically generates a
near-optimal control sequence. To achieve optimality
and safety, the executive plans into the future, fram-
ing planning as a disjunctive programming problem.
To achieve robustness to disturbances and tractability,
planning is folded within a receding horizon, continu-
ous planning framework. Key to performance is a prob-
lem reduction method based on constraint pruning. We
benchmark performance through a suite of UAV scenar-
ios using a hardware-in-the-loop testbed.

Introduction
Autonomous control of dynamic systems has application in
a wide variety of fields, from managing a team of agile un-
manned aerial vehicles (UAVs) for fire-fighting missions, to
controlling a Mars life support system. The control of such
systems is challenging for several reasons. First, they are
under-actuated systems, which means they are described by
models involving more state variables than input variables,
so that not all state variables are directly controllable; sec-
ond, their models involve continuous dynamics described by
differential equations; third, controlling these systems usu-
ally requires tight synchronization; and fourth, the controller
must be optimal and robust to disturbances.

To address these challenges, an autonomous controller for
agile systems should provide three capabilities: 1) to han-
dle tight coordination, the system should execute a tempo-
ral plan specifying time coordination constraints. 2) To deal
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with the under-actuated nature of the system, it should ele-
vate the interaction with the system under control (or plant)
to the level at which the human operator is able to robustly
program the plant in terms of desired state evolution, in-
cluding state variables that are not directly controllable. 3)
To deal with the under-actuated dynamics of the plant, the
intended state evolution must be specified in a temporally
flexible manner, allowing robust control over the system.

Previous work in model-based programming introduced
a model-based executive, called Titan (Williams 2003), that
elevates the level of interaction between human operators
and hidden-state, under-actuated systems, by allowing the
operator to specify the behavior to be executed in terms of
intended plant state evolution, instead of specific command
sequences. The executive uses models of the plant to map
the desired state evolution to a sequence of commands driv-
ing the plant through the specified states. However, Titan fo-
cuses on reactive control of discrete-event systems, and does
not handle temporally flexible constraints.

Work on dispatchable execution (Vidal & Ghallab 1996;
Morris, Muscettola, & Tsamardinos 1998; Tsamardinos,
Pollack, & Ramakrishnan 2003) provides a framework
for robust scheduling and execution of temporally flexible
plans. This framework uses distance graphs to tighten timing
constraints in the plan, in order to guarantee dispatchability
and to propagate the occurrence of events during plan exe-
cution. However, this work was applied to discrete, directly
controllable, loosely coupled systems, and, therefore, must
be extended to under-actuated plants.

Previous work on continuous planning and execution
(Ambros-Ingerson & Steel 1988; Wilkins & Myers 1995;
Chien et al. 2000) also provides methods to achieve ro-
bustness, by interleaving planning and execution, allowing
on-the-fly replanning and adaptation to disturbances. These
methods, inspired from model predictive control (MPC)
(Propoi 1963; Richalet et al. 1976), involve planning and
scheduling iteratively over short horizons, while revising the
plan when necessary during execution. This work, however,
needs to be extended to deal with temporally flexible plans
and under-actuated systems with continuous dynamics.

We propose a model-based executive that unifies the three
previous approaches and enables coordinated control of ag-
ile systems, through model-based execution of temporally
flexible state plans. Our approach is novel with respect to
three aspects. First, we provide a general method for encod-
ing both the temporal state plan and the dynamics of the
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Figure 1: a) Map of the terrain for the fire-fighting example; b) Corresponding temporally flexible state plan.

system as a mixed discrete-continuous mathematical pro-
gram. Solving this program provides near-optimal trajecto-
ries in the plant state space that satisfy the system dynam-
ics and the state plan. Second, to achieve efficiency and ro-
bustness, we apply MPC for planning of control trajecto-
ries, in the context of continuous temporal plan execution
for under-actuated dynamical systems. MPC allows us to
achieve tractability, by reasoning over a limited receding
horizon. Third, in order to further reduce the complexity of
the program and solve it in real time, we introduce pruning
policies that enable us to ignore some of the constraints in
the state plan outside the current planning horizon.

Problem Statement
Given a dynamic system (a plant) described by a plant
model, and given a temporally flexible state plan, specifying
the desired evolution of the plant state over time, the con-
tinuous model-based execution (CMEx) problem consists of
designing a control sequence that produces a plant state evo-
lution that is consistent with the state plan. In this section we
present a formal definition of the CMEx problem.

Multiple-UAV Fire-fighting Example
This paragraph introduces the multiple-UAV fire-fighting
example used in this paper. In this example, the plant con-
sists of two fixed-wing UAVs, whose state variables are their
2-D Cartesian positions and velocities. The vehicles evolve
in an environment (Fig. 1a) involving a reported fire that the
team is assigned to extinguish. To do so, they must navigate
around unsafe regions (e.g. obstacles) and drop water on the
fire. They must also take pictures after the fire has been ex-
tinguished, in order to assess the damage. An English de-
scription for the mission’s state plan is:

Vehicles v1 and v2 must start at their respective base
stations. v1 (a water tanker UAV) must reach the fire
region and remain there for 5 to 8 time units, while it
drops water over the fire. v2 (a reconnaissance UAV)
must reach the fire region after v1 is done dropping wa-
ter and must remain there for 2 to 3 time units, in order
to take pictures of the damage. The overall plan execu-
tion must last no longer than 20 time units.

Definition of a Plant Model
A plant modelM = 〈s, S, u,Ω,SE〉 consists of a vector s(t)
of state variables, taking on values from the state space S ⊂

Rn, a vector u(t) of input variables, taking on values from
the context Ω ⊂ Rm, and a set SE of state equations over u,
s and its time derivatives, describing the plant behavior with
time. S and Ω impose linear safety constraints on s and u.

In our multiple-UAV example, s is the vector of 2-D co-
ordinates of the UAV positions and velocities, and u is the
acceleration coordinates. SE is the set of equations describ-
ing the kinematics of the UAVs. The unsafe regions in S
correspond to obstacles and bounds on nominal velocities,
and the unsafe regions in Ω to bounds on accelerations.

Definition of a Temporally Flexible State Plan
A temporally flexible state plan P = 〈E , C,A〉 specifies a
desired evolution of the plant state, and is defined by a set E
of events, a set C of coordination constraints, imposing tem-
poral constraints between events, and a set A of activities,
imposing constraints on the plant state. A coordination con-
straint c = 〈e1, e2,∆Tmin

e1→e2
,∆Tmax

e1→e2
〉 constrains the dis-

tance from event e1 to event e2 in [∆Tmin
e1→e2

,∆Tmax
e1→e2

] ⊂
[0,+∞]. An activity a = 〈e1, e2, cS〉 has an associated
start event e1 and an end event e2. Given an assignment
T : E 7→ R of times to all events in P (a schedule), cS is a
state constraint that can take on one of the following forms,
where DS , DE , D∀ and D∃ are domains of S described by
linear constraints on the state variables:

1. Start in state region DS : s(T (e1)) ∈ DS ;

2. End in state region DE : s(T (e2)) ∈ DE ;

3. Remain in state region D∀: ∀t ∈ [T (e1), T (e2)], s(t) ∈
D∀;

4. Go by state region D∃: ∃t ∈ [T (e1), T (e2)], s(t) ∈ D∃.

We illustrate a state plan diagrammatically by an acyclic
directed graph in which events are represented by nodes, co-
ordination constraints by arcs, labeled by their correspond-
ing time bounds, and activities by arcs labeled with associ-
ated state constraints. The state plan for the multiple-UAV
fire-fighting mission example is shown in Fig. 1b.

Definition of the CMEx Problem
Schedule T for state plan P is temporally consistent if it sat-
isfies all c ∈ C. Given an activity a = 〈e1, e2, cS〉 and a
schedule T , a state sequence S = 〈s0 . . . st〉 satisfies activ-
ity a if it satisfies cS . S then satisfies state plan P if there
exists a temporally consistent schedule such that S satisfies
every activity in A. Similarly, given a plant model M and
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Figure 2: Continuous model-based executive architecture.

initial state s0, a control sequence U = 〈u0 . . . ut〉 satisfies P
if it generates a state sequence that satisfies P . U is opti-
mal if it satisfies P while minimizing an objective function
F (U, S, T ). A common objective is to minimize the sched-
uled time T (eE) for the end event eE of P .

Given an initial state s0, a plant model M and state
plan P , the CMEx problem consists of generating, for
each time step t, a control action ut from a control se-
quence 〈u0 . . . ut−1〉 and its corresponding state sequence
〈s0 . . . st〉, such that 〈u0 . . . ut〉 is optimal. A corresponding
continuous model-based executive consists of a state estima-
tor and a continuous planner (Fig. 2). The continuous plan-
ner takes in a state plan, and generates optimal control se-
quences, based on the plant model, and state sequences pro-
vided by the state estimator. The estimator reasons on sensor
observations and on the plant model in order to continuously
track the state of the plant. Previous work on hybrid estima-
tion (Hofbaur & Williams 2004) provides a framework for
this state estimator; in this paper, we focus on presenting an
algorithm for the continuous planner.

Overall Approach
Previous model-based executives, such as Titan, focus on re-
actively controlling discrete-event systems (Williams 2003).
This approach is not applicable to temporal plan execu-
tion of systems with continuous dynamics; our continuous
model-based executive uses a different approach that con-
sists of planning into the future, in order to perform opti-
mal, safe execution of temporal plans. However, solving the
whole CMEx problem over an infinite horizon would present
two major challenges. First, the problem is intractable in the
case of long-duration missions. Second, it would require per-
fect knowledge of the state plan and the environment be-
forehand; this assumption does not always hold in real-life
applications such as our fire-fighting scenario, in which the
position of the fire might precisely be known only once the
UAVs are close enough to the fire to localize it. Furthermore,
the executive must be able to compensate possible drift due
to approximations or errors in the plant model.

Receding Horizon CMEx
Model Predictive Control (MPC), also called Receding
Horizon Control, is a method introduced in (Propoi 1963;
Richalet et al. 1976) that tackles these two challenges in
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Figure 3: Receding horizon continuous planner.

the context of low-level control of systems with continuous
dynamics. MPC solves the control problem up to a limited
planning horizon, and re-solves it when it reaches a shorter
execution horizon. This method makes the problem tractable
by restricting it to a small planning window; it also allows
for on-line, robust adaptation to disturbances, and generates
control sequences that are optimal over the planning win-
dow, and globally near-optimal.

In this paper, we extend MPC to continuous model-based
execution of temporal plans by introducing a receding hori-
zon continuous model-based executive. We formally define
receding horizon CMEx as follows. Given a state plan P , a
plant modelM, and an initial state s(t0), single-stage, lim-
ited horizon CMEx consists of generating an optimal control
sequence 〈ut0 . . . ut0+Nt〉 for P , where Nt is the planning
horizon. The receding horizon CMEx problem consists of
iteratively solving single-stage, limited horizon CMEx for
successive initial states s(t0+i ·nt) with i = 0, 1, . . ., where
nt ≤ Nt is the execution horizon. The architecture for our
model-based executive is presented in Fig. 3.

Disjunctive Linear Programming Formulation
As introduced in Fig. 3, we solve each single-stage lim-
ited horizon CMEx problem by encoding it as a disjunc-
tive linear program (DLP) (Balas 1979). A DLP is an opti-
mization problem with respect to a linear cost function over
decision variables, subject to constraints that can be writ-
ten as logical combinations of linear inequalities (Eq. (1)).
In this paper, we solve DLPs by reformulating them as
Mixed-Integer Linear Programs. We are also developing
an algorithm that solves DLPs directly (Krishnan 2004;
Li & Williams 2005).

Minimize : f(x)
Subject to :

∧
i

∨
j gi,j(x) ≤ 0 (1)

Any arbitrary propositional logic formula whose proposi-
tions are linear inequalities is reducible to a DLP. Hence, in
this paper, we express formulae in propositional form as in
Eq. (2), where Φ(x) is defined in Eq. (3).

Minimize : f(x)
Subject to : Φ(x) (2)

Φ(x) := Φ(x) ∧ Φ(x) | Φ(x) ∨ Φ(x) | ¬Φ(x) |
Φ(x)⇒ Φ(x) | Φ(x)⇔ Φ(x) | g(x) ≤ 0 (3)
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The rest of this paper is organized as follows: we first
present our approach to encoding the constraints in the plant
model and the state plan using the DLP formalism. We
then introduce constraint pruning policies that enable us to
simplify the DLP. Finally, we show results obtained on a
multiple-UAV hardware-in-the-loop testbed.

Single-stage Limited Horizon CMEx as a DLP
Recall that to solve the CMEx problem, we consider a
smaller problem (single-stage limited horizon CMEx) by it-
eratively planning over limited planning windows. We now
present how we encode single-stage limited horizon CMEx
as a DLP. Our innovation is the encoding of the state plan as
a goal specification for the plant.

State Plan Encodings
In the following paragraphs, we present the encodings for
the state plan. A range of objective functions are possible,
the most common being to minimize completion time. To
encode this, for every event e ∈ E , we add to the DLP cost
function, the time T (e) at which e is scheduled.

Temporal Constraints Between Events: Eq. (4) encodes
a temporal constraint between two events eS and eE . For
example, in Fig. 1b, events e1 and e5 must be distant from
each other by a least 0 and at most 20 time units.

∆Tmin
eS→eE

≤ T (eE)− T (eS) ≤ ∆Tmax
eS→eE

(4)

State Activity Constraints: Activities are of the follow-
ing types: start in, end in, remain in and go by. Start in
and go by are derivable easily from the primitives remain
in and end in. We present the encodings for these two prim-
itives below. In each case, we assume that the domains DE

and D∀ are unions of polyhedra (Eq. (8)), so that st ∈ DE

and st ∈ D∀ can be expressed as DLP constraints similar to
(Eq. (9)).

Remain in activity: Eq. (5) presents the encoding for
a remain in state D∀ activity between events eS and eE .
This imposes s ∈ D∀ for all time steps between T (eS) and
T (eE). Our example imposes the constraint “Remain in [v1

at fire]”, which means that v1 must be in the fire region be-
tween e2 and e3 while it is dropping water. T0 ∈ R denotes
the initial time instant of index t = 0, and ∆T is the granu-
larity of the time discretization.

∧
t=0...Nt

{
T (eS) ≤ T0 + t ·∆T

∧ T (eE) ≥ T0 + t ·∆T

}
⇒ st ∈ D∀ (5)

End in activity: Consider an end in activity imposing
s ∈ DE at the time T (eE) when event eE is scheduled.
An example in our fire-fighting scenario is the “End in [v2

at fire]” constraint imposing v2 to be in the fire region at
event e4. The general encoding is presented in Eq. (6), which
translates to the fact that, either there exists a time instant of

index t in the planning window that is ∆T -close to T (eE)
and for which st ∈ DE , or event eE must be scheduled out-
side of the current planning window .

∨
t=0...Nt

 T (eE) ≥ T0 + (t− 1
2 )∆T

∧ T (eE) ≤ T0 + (t + 1
2 )∆T

∧ st ∈ DE


∨ T (eE) ≤ T0 − ∆T

2
∨ T (eE) ≥ T0 + (Nt + 1

2 )∆T

(6)

Guidance heuristic for End in activities: During exe-
cution of an “End in state region DE” activity, the end event
may be scheduled beyond the current horizon. In this case,
the model-based executive constructs a heuristic, in order to
guide the trajectory towards DE . For this purpose, an esti-
mate of the “distance” to DE from the end of the current
partial state trajectory is added to the DLP cost function, so
that the partial trajectory ends as “close” to DE as possible.
In the case of the multiple-UAV fire-fighting scenario, this
“distance” is an estimate of the time needed to go from the
end of the current trajectory to the goal region DE .

The heuristic is formally defined as a function hDE
: S 7→

R, where S = {Si ⊂ S} is a finite partition of S such that
DE = SiDE

∈ S. Given Si ∈ S, hDE
(Si) is an estimate of

the cost to go from Si to DE . In the fire-fighting example,
S is a grid map in which each grid cell Si corresponds to
a hypercube centered on a state vector si, and hDE

(Si) is
an estimate of the time necessary to go from state si to the
goal state siDE

. Similar to (Bellingham, Richards, & How
2002), we compute hDE

by constructing a visibility graph
based on the unsafe regions of the 〈x, y〉 state space, and by
computing, for every i, the cost to go from 〈xi, yi〉 ∈ Si to
the goal state 〈xiDE

, yiDE
〉 ∈ DE .

Eq. (7) presents the constraint, for a given “End in state
region DE” activity a, starting at event eS and ending at
event eE . This encodes the fact that, if a is scheduled to
start within the execution horizon but end beyond, then the
executive must choose a region Si ∈ S so that the partial
state trajectory ends in Si, and the value h of the heuristic at
Si is minimized (by adding h to the DLP cost function).{

T (eS) < T0 + nt ·∆T
∧ T (eE) ≥ T0 + nt ·∆T

}
⇒

∨
Si∈S

{
h = hDE

(Si)
∧ snt

∈ Si

} (7)

Eq. (7) can be simplified by reducing S to a subset S̃ ⊂ S
that excludes all the Si unreachable within the horizon. For
instance, in the multiple-UAV example, the maximum veloc-
ity constraints allow us to ignore the Si that are not reachable
by the UAVs within the execution horizon. We present in a
later section howM allows us to determine, in the general
case, when a region of the state space is unreachable.

Plant Model Encodings
Recall that a plant modelM consists of a state space S and
a context Ω imposing linear constraints on the variables, and
a set of state equations SE . We represent unsafe regions in
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Alg. 1 Pruning policy for the temporal constraint between
events eS and eE

1: if Tmax
eS

< T0 then
2: prune {eS has already been executed}
3: else if Tmin

eS
> T0 + Nt ·∆T then

4: prune{eS is out of reach within the current horizon}
5: else if Tmax

eE
< T0 then

6: prune {eE has already been executed}
7: else if Tmin

eE
> T0 + Nt ·∆T then

8: prune{eE is out of reach within the current horizon}
9: end if

S and Ω by unions of polyhedra, where a polyhedron PS of
S is defined in Eq. (8). Polyhedra of Ω are defined similarly.

PS =
{

s ∈ Rn | aT
i s ≤ bi , i = 1 . . . nPS

}
(8)

The corresponding encoding (Eq. (9)) constrains st to be
outside ofPS for all t. In the UAV example, this corresponds
to the constraint encoding obstacle collision avoidance.∧

t=0...Nt

∨
i=1...nPS

aT
i st ≥ bi (9)

The state equations in SE are given in DLP form in
Eq. (10), with the time increment ∆T assumed small with
respect to the plant dynamics. In our fixed-wing UAV ex-
ample, we use the zero-order hold time discretization model
from (Kuwata 2003).

st+1 = Ast + But (10)

Constraint Pruning Policies
Recall that our executive solves the CMEx problem by en-

coding it as a DLP and iteratively solving it over small plan-
ning windows. The ability of the executive to look into the
future is limited by the number of variables and constraints
in the DLP. In the next section, we introduce novel pruning
policies that dramatically reduce the number of constraints.

Plant Model Constraint Pruning
Recall thatM defines unsafe regions in S using polyhedra
(Eq. (8)). The DLP constraint for a polyhedron PS (Eq. (9))
can be pruned if PS is unreachable from the current plant
state s0, within the horizon Nt. That is, if the region R of all
states reachable from s0 within Nt is disjoint from PS . R is
formally defined in Eq. (11) and (12), with R0 = {s0}.

∀t = 0 . . . Nt − 1,

Rt+1 =
{

st+1|
st+1 = Ast + But,
st ∈ Rt, ut ∈ Ω

}
(11)

R =
⋃

t=0...Nt

Rt (12)

Techniques have been developed in order to compute R
(Tiwari 2003). In the UAV example, for a given vehicle, we
use a simpler, sound but incomplete method: we approxi-
mate R by a circle centered on the vehicle and of radius
Nt ·∆T · vmax, where vmax is the maximum velocity.

Alg. 2 Pruning policy for the absolute temporal constraint
on an event e

1: if Tmax
e < T0 then

2: prune {e has already been executed}
3: else if Tmin

e > T0 + Nt ·∆T then
4: prune{e is out of reach within the current horizon}
5: POSTPONE(e)
6: end if

Alg. 3 POSTPONE(e) routine to postpone an event e

1: Tmin
e ← T0 + Nt ·∆T

2: add T (e) ≥ T0 + Nt ·∆T to the DLP
3: for all events e′ do {propagate to other events}
4: Tmin

e′ ← max(Tmin
e′ , Tmin

e + ∆Tmin
〈e,e′〉)

5: end for

State Plan Constraint Pruning
State plan constraints can be either temporal constraints

between events, remain in constraints, end in constraints, or
heuristic guidance constraints for end in activities. For each
type, we now show that the problem of finding a policy is
equivalent to that of foreseeing if an event could possibly
be scheduled within the current horizon. This is solved by
computing bounds 〈Tmin

e , Tmax
e 〉 on T (e), for every e ∈ E .

Given the execution times of past events, these bounds are
computed from the bounds 〈∆Tmin

〈e,e′〉,∆Tmax
〈e,e′〉〉 on the dis-

tance between any pair of events 〈e, e′〉, obtained using the
method in (Dechter, Meiri, & Pearl 1991). This involves
running an all-pairs shortest path algorithm on the distance
graph corresponding to P , which can be done offline.

Temporal Constraint Pruning: A temporal constraint
between a pair of events 〈eS , eE〉 can be pruned if the
time bounds on either event guarantee that the event will be
scheduled outside of the current planning window (Alg. 1).

However, pruning some of the temporal constraints spec-
ified in the state plan can have two bad consequences. First,
implicit temporal constraints between two events that can
be scheduled within the current planning window might no
longer be enforced. Implicit temporal constraints are con-
straints that do not appear explicitly in the state plan, but
rather result from several explicit temporal constraints. Sec-
ond, the schedule might violate temporal constraints be-
tween events that remain to be scheduled, and events that
have already been executed.

To tackle the first issue aforementioned, rather than en-
coding only the temporal constraints that are mentioned
in the state plan, we encode the temporal constraints be-
tween any pair of events 〈e, e′〉, using the temporal bounds
〈∆Tmin

〈e,e′〉,∆Tmax
〈e,e′〉〉 computed by the method in (Dechter,

Meiri, & Pearl 1991). This way, no implicit temporal con-
straint is ignored, because all temporal constraints between
events are explicitly encoded.

To address the second issue, we also encode the abso-
lute temporal constraints on every event e: Tmin

e ≤ T (e) ≤
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Alg. 4 Pruning policy for a “Remain in state region D∀”
activity starting at event eS and ending at event eE

1: if Tmax
eE

< T0 then
2: prune {activity is completed}
3: else if Tmax

eS
< T0 then

4: do not prune{activity is being executed}
5: else if Tmin

eS
> T0 + Nt ·∆T then

6: prune {activity will start beyond Nt}
7: else if Tmax

eS
≤ T0 + Nt ·∆T then

8: do not prune {activity will start within Nt}
9: else if R ∩D∀ = ∅ then

10: prune; POSTPONE(eS)
11: end if

Alg. 5 Pruning policy for an “End in state region DE” activ-
ity ending at event eE

1: if Tmax
eE

< T0 then
2: prune {eE has already occurred}
3: else if Tmax

eE
≤ T0 + Nt ·∆T then

4: do not prune {eE will be scheduled within Nt}
5: else if Tmin

eE
> T0 + Nt ·∆T then

6: prune {eE will be scheduled beyond Nt}
7: else if R ∩DE = ∅ then
8: prune; POSTPONE(eE)
9: end if

Tmax
e . The pruning policy for those constraints is presented

in Alg. 2. The constraint can be pruned if e is guaranteed to
be scheduled in the past (i.e. it has already been executed,
line 1). It can also be pruned if e is guaranteed to be sched-
uled beyond the current planning horizon (line 3). In that
case, e must be explicitly postponed (Alg. 3, lines 1 & 2)
to make sure it will not be scheduled before T0 at the next
iteration (which would then correspond to scheduling e in
the past before it has been executed). The change in Tmin

e is
then propagated to the other events (Alg. 3, line 3).

Remain in Constraint Pruning (Alg. 4): Consider the
constraint cS on a “Remain in state region D∀” activity a,
between events eS and eE (Eq. (5)). If eE is guaranteed
to be scheduled in the past, that is, it has already occurred
(line 1), then a has been completed and cS can be pruned.
Otherwise, if eS has already occurred (line 3), then a is be-
ing executed and cS must not be pruned. Else, if a is guar-
anteed to start beyond the planning horizon (line 5), then cS

can be pruned. Conversely, if a is guaranteed to start within
the planning horizon (line 7), then cS must not be pruned.
Otherwise, the time bounds on T (eS) and T (eE) provide no
guarantee, but we can still use the plant modelM to try to
prune the constraint: ifM guarantees that D∀ is unreachable
within the planning horizon, then cS can be pruned (line 9;
refer to Eq. (11) & (12) for the definition of R). Similar to
Alg. 2, eS must then be explicitly postponed.

End in Constraint Pruning (Alg. 5): Consider a con-
straint cS on an “End in state region DE” activity ending
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Figure 4: Performance gain by constraint pruning.

at event eE (Eq. (6)). If eE is guaranteed to be scheduled in
the past (i.e., it has already occurred, line 1), then cS can be
pruned. Otherwise, if the value of Tmax

eE
guarantees that eE

will be scheduled within the planning horizon (line 3), then
cS must not be pruned. Conversely, it can be pruned if Tmin

eE

guarantees that eE will be scheduled beyond the planning
horizon (line 5). Finally, cS can also be pruned if the plant
model guarantees that DE is unreachable within the plan-
ning horizon from the current plant state (line 7). Similarly
to Alg. 2 and 4, eE must then be explicitly postponed.

Guidance Constraint Pruning: The heuristic guidance
constraint for an end in activity a between events eS and
eE (Eq. (7)) can be pruned if a is guaranteed either to end
within the execution horizon (Tmax

eE
≤ T0 + nt ·∆T ) or to

start beyond (Tmin
eS

> T0 + nt ·∆T ).

In the next section, we show that our model-based execu-
tive is able to design optimal control sequences in real time.

Results and Discussion
The model-based executive has been implemented in C++,
using Ilog CPLEX to solve the DLPs. It has been demon-
strated on fire-fighting scenarios on a hardware-in-the-loop
testbed, comprised of CloudCap autopilots controlling a set
of fixed-wing UAVs. This offers a precise assessment of
real-time performance on UAVs. Fig. 1a was obtained from
a snapshot of the operator interface, and illustrates the tra-
jectories obtained for the state plan in Fig. 1b.

Fig. 4 and 5 present an analysis of the performance of the
executive on a more complex example, comprised of two
vehicles, two obstacles, and 26 activities, for a total mission
duration of about 1,300 sec. These results were obtained on a
1.7GHz computer with 512MB RAM, by averaging over the
whole plan execution, and over 5 different runs with random
initial conditions. At each iteration, the computation was cut
short if and when it passed 200 sec.

In both figures, the x axis corresponds to the length of the
execution horizon, nt ·∆T , in seconds. For these results, we
maintained a planning buffer of Nt ·∆T −nt ·∆T = 10 sec
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Figure 5: Performance of the model-based executive.

(where Nt ·∆T is the length of the planning horizon). The
y axis corresponds to the average time in seconds required
by CPLEX to solve the DLP at each iteration. As shown in
Fig. 4, the use of pruning policies entails a significant gain
in performance. Note that these results were obtained by dis-
abling the Presolve function in CPLEX, which also inter-
nally prunes some of the constraints to simplify the DLP.

Fig. 5 presents an analysis of the model-based executive’s
capability to run in real time. The dotted line is the line
y = x, corresponding to the real-time threshold. It shows
that below the value x ' 7.3s, the model-based executive is
able to compute optimal control sequences in real time (the
average DLP solving time is below the length of the execu-
tion horizon). For longer horizons corresponding to values
of x above 7.3s, CPLEX is unable to find optimal solutions
to the DLPs before the executive has to replan (the solving
time is greater than the execution horizon). Note that in that
case, since CPLEX runs as an anytime algorithm, we can
still interrupt it and use the best solution found thus far to
generate sub-optimal control sequences.

Note also that the number of the disjunctions in the DLP
grows linearly with the length of the planning horizon; there-
fore, the complexity of the DLP is worst-case exponential in
the length of the horizon. In Fig. 5, however, the relationship
appears to be linear. This can be explained by the fact that
the DLP is very sparse, since no disjunct in the DLP involves
more than three or four variables.

Conclusion
In this paper, we have presented a continuous model-based
executive that is able to robustly execute temporal plans for
agile, under-actuated systems with continuous dynamics. In
order to deal with the under-actuated nature of the plant and
to provide robustness, the model-based executive reasons on
temporally flexible state plans, specifying the intended plant
state evolution. The use of pruning policies enables the exec-
utive to design near-optimal control sequences in real time,
which was demonstrated on a hardware-in-the-loop testbed
in the context of multiple-UAV fire-fighting scenarios. Our
approach is broadly applicable to other dynamic systems,
such as chemical plants or Mars life support systems.
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