
Distributed Constraint Optimization
under Stochastic Uncertainty

Thomas Léauté and Boi Faltings
École Polytechnique Fédérale de Lausanne (EPFL)

Artificial Intelligence Laboratory (LIA)
firstname.lastname@epfl.ch

Abstract

In many real-life optimization problems involving multiple
agents, the rewards are not necessarily known exactly in ad-
vance, but rather depend on sources of exogenous uncertainty.
For instance, delivery companies might have to coordinate to
choose who should serve which foreseen customer, under un-
certainty in the locations of the customers. The framework
of Distributed Constraint Optimization under Stochastic Un-
certainty was proposed to model such problems; in this pa-
per, we generalize this formalism by introducing the concept
of evaluation functions that model various optimization cri-
teria. We take the example of three such evaluation func-
tions, expectation, consensus, and robustness, and we adapt
and generalize two previous algorithms accordingly. Our ex-
perimental results on a class of Vehicle Routing Problems
show that incomplete algorithms are not only cheaper than
complete ones (in terms of simulated time, Non-Concurrent
Constraint Checks, and information exchange), but they are
also often able to find the optimal solution. We also show
that exchanging more information about the dependencies of
their respective cost functions on the sources of uncertainty
can help the agents discover higher-quality solutions.

1 Introduction
Consider a set of delivery companies, which must coordinate
to decide how to serve a set of customers, so as to minimize
the total distance travelled. In real life, it is often the case
that not all information about customers is known exactly,
at the time when the allocation decisions must be made, and
the problem is one of multi-agent optimization under uncer-
tainty. Other examples include meeting scheduling with un-
certain meeting durations, or sensor network configuration
under uncertainty in target positions. Uncertainty can take
many forms: for instance, the customers positions might be
known beforehand, but their exact demands are not known a
priori, and can only be forecast with some probability, based
on historical data. In this paper, we focus particularly on
sources of uncertainty that have competing effects on the
agents. If one customer’s demand is known, but her exact
location is uncertain, then the optimal delivery company for
her depends on her distance from the respective depots, and
finding such an optimal allocation usually requires coordi-
nated reasoning about uncertainty by the companies.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose the formalism of Distributed Constraint Op-
timization under Stochastic Uncertainty (StochDCOP) to
model such multi-agent optimization problems. This paper
is a significant improvement over our preliminary workshop
paper (Léauté and Faltings 2009); the novel contributions
are threefold. First, we enrich the StochDCOP formalism
with the concept of evaluation functions (Section 2), which
characterize the agents’ approach to handling uncertainty.
Second, we adapt and generalize previous distributed algo-
rithms accordingly (Sections 3 and 4). Finally, we empiri-
cally compare the resulting algorithms on Vehicle Routing
Problem benchmarks (Section 5), and we show in particular
that incomplete algorithms can outperform complete ones,
while still finding the optimal solution in most cases.

2 DCOP under Uncertainty

Section 2.1 first defines the DCOP under uncertainty, illus-
trated on a vehicle routing problem in Section 2.2.

2.1 Problem Definition

We first recall the definition of Distributed Constraint Opti-
mization (DCOP), of which StochDCOP is an extension.
Definition 1 (DCOP) A DCOP is a tuple < A,X ,D, C >:

• A = {a1, . . . , a|A|} is a set of agents;
• X = {x1, . . . , xn} is a set of decision variables, each

decision variable xi being controlled by an agent a(xi);
• D = {D1, . . . , Dn} is a set of finite domains for the deci-

sion variables such that xi takes values in Di;
• C = {c1, . . . , cm} is a set of soft1 constraints that assign

costs ∈ R to assignments to subsets of decision variables.
Each ci is assumed to be known to all agents involved.

A solution is an assignment of values to all decision vari-
ables that minimizes the sum of all constraints

∑
i ci.

A DCOP is distributed in nature, in two respects:
1. The decision power is distributed: each agent is in charge

of choosing values for the decision variables it controls;
2. The knowledge is distributed: each agent only knows the

constraints over the decision variables it controls, and
knows all the variables involved in these constraints.
1Hard constraints can be modeled as soft constraints with suf-

ficiently large costs.

68

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

DCOP under Stochastic Uncertainty (StochDCOP) is an
extension of DCOP that includes sources of uncertainty,
which are modeled by random, uncontrollable variables.

Definition 2 (StochDCOP) A StochDCOP is defined as a
tuple < A,X ,D,R,Δ,P, C, e >, where:

• A, X and D are defined as in Definition 1;
• R = {r1, . . . , rq} is a set of random variables modeling

future, uncontrollable events;
• Δ = {Δ1, . . . ,Δq} is a set of finite domains for the ran-

dom variables;
• P = {π1, . . . , πq} is a set of probability distributions for

the random variables, such that πi : Δi → [0, 1] and the
values of πi sum up to 1;

• C = {c1, . . . , cm} is a set of soft constraints over mixed
subsets of decision and random variables;

• e is an evaluation function, which, given a constraint
ci(xi1 , . . . , xil , ri′1 , . . . , ri′k), associates, to each assign-
ment of values to ci’s decision variables, a single cost
eci(xi1 , . . . , xil) ∈ R that is independent of the ri′ ’s.

A solution is an assignment of values to all decision vari-
ables that is independent of the random variables, such that:

(x∗
1, . . . x

∗
n) = arg min

x1...xn

{
e∑

i ci
(x1, . . . xn)

}
.

StochDCOPs are still distributed in nature:

1. The decision power is distributed like in DCOPs, but ran-
dom variables are not under the control of the agents: their
values are drawn by Nature from their respective prob-
ability distributions, independently of the decision vari-
ables, and after the agents must have chosen values for
their decision variables. Solving a StochDCOP involves
choosing values for the decision variables only, anticipat-
ing Nature’s future decisions.

2. The knowledge of each random variable, its domain
and its probability distribution is shared only among the
agents in control of neighboring decision variables.

The evaluation function is used to summarize in one crite-
rion the cost of a given assignment to the decision variables,
which would normally depend on the random variables. An
example is the expectation function: e∑

i ci
= ER [

∑
i ci].

Other evaluation functions are proposed in Section 2.3.
Following Definition 2, multiple agents’ costs can depend

on a common random variable. The algorithms discussed
in this paper differ in how agents reason about such co-
dependencies. Furthermore, the probability distributions are
assumed to be independent of each other and of the deci-
sion variables, i.e. we assume independent sources of ex-
ogenous uncertainty. Two sources of uncertainty with corre-
lated probability distributions can be represented by a single
random variable in order to enforce independence.

2.2 Vehicle Routing Example

This section defines a problem class that is a variant of the
well-known Vehicle Routing Problem (VRP), which we use
to illustrate our algorithms on the instance in Figure 1, and
to evaluate them on problem instances that have a structure

d1 �
�
�

c1

?
?
?

�
�
�

c2

?
?
?

d2
d3

Figure 1: A StochDisSDMDVRP instance involving two
customers c1 and c2 with each three possible uncertain loca-
tions, and three depots such that depot d1 can only serve c1,
d2 can serve both customers, and d3 only c2.

inspired by real-life problems (Section 5). It extends the
DisMDVRP variant in (Léauté, Ottens, and Faltings 2010)
in two respects: 1) customers have uncertain locations, and
2) a customer’s demand can be split among multiple depots.
Definition 3 (StochDisSDMDVRP) The Stochastic, Dis-
tributed, Shared-Deliveries, Multiple-Depot VRP is defined
as a tuple < D,nV , Qmax, Lmax, H,C,R,Q >, where:
• D = {d1, . . . , dnD

} is a set of depots in the Euclidian
plane, each controlled by a different delivery company;

• nV is the number of vehicles at each depot;
• Qmax and Lmax are respectively the maximum load and

maximum route length of any vehicle;
• H ≤ Lmax/2 is the visibility horizon of each company,

which defines the boundaries of its knowledge of the over-
all problem. Depot di is only aware of and can only serve
the customers that are within distance H;

• C = {c1, . . . , cnC} is a set of customers;
• R = {r1, . . . , rnC

} are the uncertain locations for the
customers, with known probability distributions;

• Q = {q1, . . . , qnC
} ∈ N

nC are the customer demands,
which can be split among multiple companies.

The goal is for the companies to agree on who should serve
which customers, using which vehicle routes, so as to fully
serve all visible customers, at minimal total route length.

r1

x1
1��

��

��
��vrp1

d1

r2

x2
3��

��

��
��vrp3

d3

��
��

��
��

x1
2 x2

2

vrp2

d2
sum1 sum2

Figure 2: The StochDCOP constraint graph for Figure 1.

We propose the following StochDCOP formulation, in
which each depot di is an agent, controlling a variable xj

i ∈
[0, qj] for each visible customer cj , modeling how much of
cj’s demand it serves (Figure 2). One random variable rj is
also introduced for each customer cj that corresponds to her
uncertain location. The constraints are of two types:

69

1. For each customer cj , if the set Dj of H-away depots is
�= ∅, then a hard constraint sum1 :

∑
di∈Dj x

j
i = qj en-

forces that cj’s demand for qj goods must be fully served.

2. For each depot di, if the set Ci = {ci1 , . . . , cin} of visible
customers is �= ∅, then the following soft constraint rep-
resents the cost of the optimal solution to di’s own VRP:

vrpi(x
i1
i , . . . , xin

i , ri1 , . . . , rin) ∈ [0,∞] . (1)

Checking vrpi against a given variable assignment is ex-
pensive, since it involves solving an NP-hard VRP.

2.3 Evaluation Functions

As presented in Definition 2, a solution to a StochDCOP is
an assignment (x∗

1, . . . , x
∗
n) that is independent of the ran-

dom variables ri. Its cost therefore depends on the ri’s, and
is equal to

∑
i ci(x

∗
1, . . . , x

∗
n, r1, . . . , rq). In order to eval-

uate the quality of a solution using a single criterion, the
StochDCOP defines an evaluation function e, such that the
optimal solution must minimize e∑

i ci
(x∗

1, . . . , x
∗
n) ∈ R.

Consider a constraint c(x, r); we formalize three ways to
evaluate the cost of an assignment to x: the expectation ap-
proach, the consensus approach, and the robust approach.

Expected Solution Quality The expectation function re-
turns the expected value of c(x, r), based on πr:

ec : x → Er [c(x, r)] =

∫ ∞

r=−∞
πr(r)c(x, r)dr .

When the domain Δr of the random variable r is finite, the
expectation can be computed as follows:

Er [c(x, r)] =
∑

ri∈Δr

πr(ri)c(x, ri) . (2)

The prefix Exp- will denote this approach.

Consensus: Maximum Probability of Optimality Bent
and Van Hentenryck (2004) introduced a new approach
for centralized stochastic problems called consensus. They
showed that when the number of scenarios used to approx-
imate the probability distributions is limited, it is better to
choose a solution that is the optimal one for the largest num-
ber of scenarios, rather than one that minimizes the expected
cost across scenarios. This amounts to maximizing the prob-
ability of optimality, which we denote by P, rather than the
expected solution quality, and corresponds to choosing the
evaluation function ec : x → −Pr[c(x, r)] that returns (mi-
nus) the probability that c(x, r) is minimized:

Pr[c(x, r)] =

∫ ∞

r=−∞
πr(r) · δx=argminx′ c(x′,r)(x, r)dr

Pr[c(x, r)] =
∑

ri∈Δr

πr(ri) · δx=argminx′ c(x′,ri)(x, ri) (3)

where δX = 1 if X is true, 0 otherwise. This approach will
be referred to using the prefix Cons-.

Robust Decision-making: Worst-case Solution Quality
In some problem domains, agents might not want to choose
a solution that can have a very high cost with some non-zero
probability, even if this solution gives minimum expected
cost. In such cases, it can be more desirable to choose the
solution that minimizes the worst-case cost instead:

ec : x → max
r

{c(x, r)} .
The prefix Rob- will be used for this approach.

3 Related Work

Matsui et al. (2010) introduced the formalism of Quantified
DCOP (QDCOP), which is a multi-stage StochDCOP, ex-
cept that they only considered the robust evaluation func-
tion. They showed that QDCOP algorithms can be obtained
from existing DCOP algorithms, such as ADOPT (Modi et
al. 2005), by assigning random variables to virtual, adver-
sarial agents that perform the “opposite” DCOP algorithm,
by maximizing the overall cost. In this paper, we propose to
adapt this approach to solve StochDCOPs using the DPOP
algorithm (Petcu and Faltings 2005), and we generalize it to
the expectation and consensus evaluation functions.

One particularity of this approach is that it imposes that
the variable ordering used in the algorithm must be consis-
tent. Both ADOPT and DPOP use a pseudo-tree variable
ordering, i.e. a tree in which back-edges with remote an-
cestors are allowed. Consistency imposes that decision vari-
ables must be at the top, and random variables at the bottom.
In the example in Figure 3, if the task of simulating r1 and r2
is assigned to depot d3 (which makes most sense in terms
of message exchange since d3 already controls variable x2

3),
then all three VRP constraints are centralized at d3, which
creates an important computational bottleneck.

r1x1
1

r2x2
3x1

2 x2
2��

��
��
��

��
��

��
��

��
��

��
��

Figure 3: A consistent pseudo-tree for the constraint graph
in Figure 2 (sideways to save space, with x1

1 at the root).

This approach will be referred to with the Comp- prefix,
because the use of consistent pseudo-trees guarantees com-
pleteness. The algorithms described in the following section
do not impose consistency.

4 Incomplete StochDCOP Algorithms

This section proposes a family of StochDCOP algorithms,
called E[DPOP], based on DPOP (Petcu and Faltings 2005).
It is worth pointing out that our techniques are not specific
to DPOP, and could be applied to other DCOP algorithms.

4.1 General Approach

In contrast with Section 3, E[DPOP] builds pseudo-trees that
initially only involve decision variables; random variables

70

are inserted afterwards. The resulting pseudo-trees may vi-
olate the consistency rule that decision variables should be
above random variables (Figure 4). Notice that the pseudo-
tree that has lower depth and width than the Comp- approach
(Figure 3), hereby improving performance (Section 5).

E[DPOP] builds upon the general bucket elimination
scheme by Dechter (2003), and proceeds in four phases:

1. DFS pseudo-tree generation: agents generate a pseudo-
tree arrangement of the decision variables only;

2. Assignment of random variables to decision variables:
random variables, which are not initially controlled by
any agent, are associated to decision variables;

3. UTIL propagation: costs are aggregated up the pseudo-
tree, projecting out variables along the way, until the root
variable knows the optimal evaluated cost for the whole
problem as a function of its possible values only;

4. VALUE propagation: optimal assignments to decision
variables are propagated down the pseudo-tree.

We propose E[DPOP] variants that differ on where each
random variable r is inserted in the pseudo-tree during
Phase 2. In Local-E[DPOP], r is assigned to each decision
variable responsible for enforcing a constraint involving r.
In Figure 4a), r1 is involved in the two constraints vrp1
and vrp2 (Figure 2), enforced respectively by x1

1 and x2
2.

During Phase 3, each decision variable x computes its op-
timal assignment x∗ (as a function of higher decision vari-
ables) by minimizing the evaluation function, and reports
to its parent the corresponding evaluated optimal cost c∗x.
Neither therefore depends on any random variable. This is
shown for variable x2

3 in Figure 4a), where:

x2
3
∗
(x2

2) = argmin
x2
3

{
evrp3+sum2(x

2
3, x

2
2)
}

(4)

c∗x2
3
(x2

2) = evrp3+sum2
(x2

3
∗
(x2

2), x
2
2) . (5)

r1

x1
1

r2

x2
3

x1
2

x2
2��

��
��
��

��
��

��
��

�

�

�

r1, r2

r1

x1
1

x2
3

x1
2

x2
2��

��
��
��

��
��

��
��r2

a) b) �

�

�

c∗
x2
3
(x2

2) cx2
3
(x2

3
∗
, x2

2, r2)

x2
3
∗
(x2

2) x2
3
∗
(x2

2)

Figure 4: An (inconsistent) pseudo-tree for the constraint
graph in Figure 2. The cost reported by x2

3 to x2
2 is also

shown, a) for Local-E[DPOP], and b) for Global-E[DPOP].

In contrast, Global-E[DPOP] assigns r to the lowest com-
mon ancestor lca(r) of all decision variables enforcing a
constraint over r. In Figure 4b), r1 is no longer assigned
to x1

1 and x2
2, but to their lca x1

2. The optimal assignment
to each decision variable x is computed as in Eq. (4), but x

Algorithm 1 Computational steps for the expectation ap-
proach, to compute x∗ = argminx∈Dx {Er [c(x, r)]} and
report Er [c(x

∗, r)], using in Eq. (2).
1: x∗ ← null; c∗ ← ∞
2: for each decision x ∈ Dx do
3: c ← 0
4: for each scenario ri ∈ Δr do
5: c ← c+ πr(ri)c(x, ri) // 1 constraint check
6: if c > c∗ then continue to next decision
7: if c ≤ c∗ then
8: x∗ ← x; c∗ ← c
9: Er [c(x

∗, r)] ← c∗

now reports its effective cost, as a function of the random
variables whose lca is above. For instance, x2

3 now reports:

cx2
3
(x2

3
∗
, x2

2, r2) = (vrp3 + sum2)(x
2
3
∗
(x2

2), x
2
2, r2) . (6)

The position of r in the pseudo-tree therefore defines the
amount of information agents exchange about the dependen-
cies of their respective costs on r. In Local-E[DPOP], no
such information is exchanged, since agents only report their
evaluated costs, while in Global-E[DPOP], this information
is propagated up the pseudo-tree until lca(r). While this ad-
ditional information exchange can yield higher-quality so-
lutions (Section 5), both algorithms remain incomplete, be-
cause they use inconsistent pseudo-trees (Section 3). One
exception to this incompleteness property is when the eval-
uation function is linear, as formally shown in (Léauté and
Faltings 2009), which is the case of the expectation function.
Therefore, Local-Exp-E[DPOP] and Global-Exp-E[DPOP]
are complete and output the same solutions; in our exper-
iments (Section 5), we only consider Local-Exp-E[DPOP],
which has a lower complexity. For the non-linear consensus
and robust functions, completeness is not guaranteed.

4.2 Hybrid Consensus-Expectation Approach

The general approach described in the previous section ac-
tually does not apply as is to the consensus evaluation func-
tion, because it is not commensurable: while the evaluations
Er [c(x, r)] and maxr c(x, r) remain costs, Pr[c(x, r)] is in-
stead a probability of optimality (Section 2.3). In Figure 4a),
this means variable x2

3 cannot compute c∗
x2
3
(x2

2) as in Eq. (5)
and report it to x2

2, because x2
2 would not be able to sum

c∗
x2
3
(x2

2) (which would then be a probability) with its local
constraints to compute the aggregated cost of its subtree.

To address this, we propose a Cons-/Exp- hybrid, in which
agents use the consensus evaluation function in Eq. (4), but
the expectation function in Eq. (5). This is inspired by
previous work by Bent and Van Hentenryck (2004), who
have shown that, even when the goal is to minimize the ex-
pected cost, it can be beneficial to use the consensus func-
tion to choose the optimal values for the decision variables,
because consensus can require fewer expensive (vrp) con-
straint checks (CCs) that expectation.

This is illustrated in Algorithms 1 and 2. In the worst case,
expectation requires |Dx| · |Δr| CCs. On the other hand,

71

inst. H Qmax split Local-Rob-E[DPOP] Glocal-Rob-E[DPOP] Comp-Rob-E[DPOP]
cost NCCC info cost NCCC info cost NCCC info

1

p04 18.1

61 465.8 73986 5.9 465.8 78339 38.0 465.8 139266 36.9
2 62 � 476.9 73986 5.9 474.8 78339 38.0 474.8 139266 36.9
3 63 474.9 73986 5.9 474.9 78339 38.0 474.9 139266 36.9
4 64 � 455.3 73986 5.9 455.3 78339 38.0 455.3 139266 36.9
5 65 446.3 73986 5.9 446.3 78339 38.0 446.3 139266 36.9
6 66 � 453.3 73986 5.9 453.3 78339 38.0 453.3 139266 36.9
7

p08 55
490 1815.2 33602 6.1 1815.2 38403 41.5 1815.2 57602 16.9

8 494 1815.2 33602 6.1 1815.2 38403 41.5 1815.2 57602 16.9
9 498 � 1740.0 33602 6.1 1740.0 38403 41.5 1740.0 57602 16.9

10 p11 26 140 � 466.3 495202 13.5 460.9 514407 154.8 460.9 960002 243.8
11 144 445.2 499202 13.5 445.2 518403 154.8 445.2 960002 243.8

Table 1: Worst-case cost, NCCCs and information exchange (in kB) for algorithms using the robust evaluation function. The
column labelled split specifies whether the optimal solution involves splitting at least one customer’s demand among depots.

Algorithm 2 Computational steps for the Local-Cons- ap-
proach, to compute x∗ = argminx∈Dx {−Pr[c(x, r)]} us-
ing Eq. (3), and report Er [c(x

∗, r)] as in Eq. (2).
1: ∀x ∈ Dx π[x] ← 0 // initial probabilities of optimality
2: x∗ ← null
3: π2 ← 0 // second-best probability of optimality
4: for each scenario ri ∈ Δr = {r1, . . . , rk} do
5: x′∗ ← null; c′∗ ← ∞
6: for each decision x′ ∈ Dx do
7: c′ ← c(x′, ri) // 1 constraint check
8: if c′ < c′∗ then
9: x′∗ ← x′; c′∗ ← c′

10: π[x′∗] ← π[x′∗] + πr(ri)
11: if π[x′∗] ≥ π[x∗] then
12: if x′∗ �= x∗ then π2 ← π[x∗]
13: x∗ ← x′∗
14: else if π[x′∗] > π2 then π2 ← π[x′∗]
15: if

∑k
j=i+1 πr(rj) ≤ π[x∗]− π2 then break

16: Er [c(x
∗, r)] ← ∑

ri∈Δr
πr(ri)c(x

∗, ri) // |Δr| CCs

for each scenario (Algorithm 2, line 4), consensus computes
an optimal decision x′∗, which requires 1 CC per x′ ∈ Dx

(line 7), but it might not be necessary to consider all values
of r (all scenarios) to find the decision x∗ with the high-
est probability of optimality π[x∗]. The exploration can be
interrupted as soon as the remaining scenarios are too im-
probable for the second-best solution (of probability of op-
timality π2) to catch up with the first best (line 15). In the
best case, when the first 1

2 |Δr| scenarios have the same opti-
mal decision, consensus only performs 1

2 |Δr|(|Dx|+2) CCs
(where the +2 comes from line 16).

5 Experimental Results

Experiments were performed using the FRODO platform
(Léauté, Ottens, and Szymanek 2009), on a 2.53-GHz com-
puter, with 2 GB of Java heap. The OR-Objects Library
(OpsResearch 2010) was used to provide approximate solu-
tions to the local VRP instances. We adapted some of the
Cordeau MDVRP benchmark instances from (Dorronsoro

104 105 106

NCCCs

101

102

103

Si
m

ul
at

ed
ti

m
e

(i
n

se
c)

p08 p04 p11

Figure 5: Median simulated time (over 27 runs) for the prob-
lem instances and the algorithms in Tables 1 and 2.

2007), adding uncertainty in the positions of the customers
that can be served by more than one depot, using 4 uncertain
positions with the probability distribution [1

10 ,
2
10 ,

3
10 ,

4
10].

To evaluate runtime performance, we used two competing
metrics: the number of Non-Concurrent Constraint Checks
(NCCCs) by Gershman et al. (2008) (only counting the
expensive vrp constraint checks, ignoring the inexpensive
sum constraints), and the simulated time metric by Sultanik,
Lass, and Regli (2007). Profiling some algorithm execu-
tions revealed that the vrp constraint checks are, by far, the
computational bottleneck, so we expected the two metrics
to be consistent. Figure 5 confirms that the simulated time
is indeed proportional to the number of NCCCs (in log-log,
the lines have slope 1). This was not observed when also
counting sum constraint checks. The average cost of one
NCCC (the distance from the x axis) depends on the num-
ber of customers in the VRPs, and therefore varies with the
problem instance. For a given instance, the vrp NCCC costs
also vary, but always average out in the same way, because
E[DPOP] performs Dynamic Programming. Therefore, we
hereafter only report runtime in terms of (vrp) NCCCs.

Table 1 compares Local-, Global- and Comp- using the
robust evaluation function. While theoretically incomplete,
Global- systematically found the optimal solution output

72

split Local-Cons-E[DPOP] Global-Cons-E[DPOP] Comp-Cons-E[DPOP] Local-Exp-E[DPOP]
cost prob. NCCC cost prob. NCCC cost prob. NCCC cost prob. NCCC

1 465.15 100 64362 465.15 100 65924 465.15 100 243716 465.15 100 70961
2 � 472.49 20 66003 472.49 20 64358 472.49 20 243716 472.49 20 70162
3 � 471.25 46 68139 471.25 46 66796 471.25 46 243716 471.25 46 70244
4 � 453.63 100 65218 453.63 100 65278 453.63 100 243716 453.63 100 70392
5 � 445.28 80 63904 445.28 80 63852 445.28 80 243716 445.28 80 71316
6 452.17 20 64572 452.17 20 66539 452.17 20 243716 452.1 50 70974
7 1789.93 41 18859 1789.93 41 18281 1791.22 30 100804 1789.93 41 32576
8 1790.43 29 19763 1790.43 29 18947 1791.22 30 100804 1789.93 41 32182
9 � 1735.95 75 32830 1735.95 75 31990 1735.95 75 100804 1735.95 75 32884

10 � 454.95 33 449824 454.95 33 446301 454.95 33 1675204 454.95 33 476382
11 436.67 81 461091 436.67 81 470501 436.67 81 1680004 436.67 81 482360

Table 2: Expected cost, probability of optimality (in %), and NCCCs for the consensus and expectation approaches. Information
exchange is the same as in Table 1: it only depends on the method (Local-, Global- or Comp-) and not on the evaluation function.

by the (complete2) Comp- approach. We believe this is
due to the multiplicity of optimal solutions in these bench-
marks. Local- also found the optimal solution, except on
instances (in italics) for which the optimal worst-case solu-
tion involves splitting one customer’s demand, which hap-
pens when the number of vehicles one depot needs depends
on the demand allocation. These solutions are intuitively
harder to find because they require a finer-grained coordina-
tion among the depots. This coordination comes at an ad-
ditional price that can make Global- send more information
than Comp- (except on p11). Comp- is however significantly
slower, and they are both dominated by Local- (in bold).

Table 2 shows the results for the consensus and expecta-
tion evaluation functions. The Cons- algorithms almost al-
ways found the solution with minimum expected cost, with
a few rare exceptions (in italics). In terms of runtime, Local-
Cons- and Global-Cons- perform roughly the same; their rel-
ative performances depend on how much of the uncertainty
space they can prune (Algorithm 2, line 15) on each problem
instance. The expectation approach is always outperformed,
and Comp-Cons-E[DPOP] is also clearly dominated.

6 Conclusion

We have introduced the StochDCOP framework for multi-
agent optimization under uncertainty, represented by ran-
dom variables. We have illustrated it on a Vehicle Rout-
ing Problem variant with uncertain customer locations. We
have proposed several StochDCOP algorithms, which differ:
1) on how much information agents exchange about the de-
pendencies of their cost functions on the random variables
(local, global or complete reasoning), and 2) on the criterion
they use to evaluate solution quality (expectation, consensus
or robustness). Our experiments have shown that incomplete
algorithms can be significantly cheaper than complete ones,
while still finding the optimal solution on most benchmark
instances. Future work includes studying the convergence
when sampling is used to approximate the uncertainty space,
and generalizing to multi-stage stochastic optimization.

2modulo the fact that the VRP algorithm provided by the OR-
Object library is incomplete, and may report sub-optimal routes.

References

Bent, R., and Van Hentenryck, P. 2004. The value of con-
sensus in online stochastic scheduling. In 14th Intl Conf. on
Automated Planning and Scheduling (ICAPS’04), 219–226.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Dorronsoro, B. 2007. The VRP Web benchmark repository.
http://neo.lcc.uma.es/radi-aeb/WebVRP/.
Gershman, A.; Zivan, R.; Grinshpoun, T.; Grubshtein, A.;
and Meisels, A. 2008. Measuring distributed constraint op-
timization algorithms. In Proceedings of DCR’08, 17–24.
Léauté, T., and Faltings, B. 2009. E[DPOP]: Distributed
constraint optimization under stochastic uncertainty using
collaborative sampling. In Proceedings of DCR’09, 87–101.
Léauté, T.; Ottens, B.; and Faltings, B. 2010. Ensuring
privacy through distributed computation in multiple-depot
vehicle routing problems. In Proc. of AILog’10, 25–30.
Léauté, T.; Ottens, B.; and Szymanek, R. 2009. FRODO 2.0:
An open-source framework for distributed constraint opti-
mization. In Proceedings of the DCR’09 Workshop, 160–
164. http://liawww.epfl.ch/frodo/.
Matsui, T.; Matsuo, H.; Silaghi, M.-C.; Hirayama, K.;
Yokoo, M.; and Baba, S. 2010. A quantified distributed con-
straint optimization problem. In AAMAS’10, 1023–1030.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
ADOPT: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161:149–180.
OpsResearch. 2010. Operations Research – Java Objects.
http://or-objects.org/.
Petcu, A., and Faltings, B. 2005. DPOP: A Scalable Method
for Multiagent Constraint Optimization. In Proc. 19th Intl
Joint Conf. on Artificial Intelligence (IJCAI’05), 266–271.
Sultanik, E. A.; Lass, R. N.; and Regli, W. C. 2007. DCOPo-
lis: A framework for simulating and deploying distributed
constraint optimization algorithms. In Proc. of DCR’07.

73

