
E[DPOP]: Distributed Constraint Optimization
under Stochastic Uncertainty
using Collaborative Sampling

Thomas Léauté and Boi Faltings

École Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory (LIA)

firstname.lastname@epfl.ch

Abstract. Many applications that require distributed optimization also
include uncertainty about the problem and the optimization criteria
themselves. However, current approaches to distributed optimization as-
sume that the problem is entirely known before optimization is carried
out, while approaches to optimization with uncertainty have been in-
vestigated for centralized algorithms. This paper introduces the frame-
work of Distributed Constraint Optimization under Stochastic Uncer-
tainty (StochDCOP), in which random variables with known probabil-
ity distributions are used to model sources of uncertainty. Our main
novel contribution is a distributed procedure called collaborative sam-
pling, which we use to produce several new versions of the DPOP algo-
rithm for StochDCOPs. We evaluate the benefits of collaborative sam-
pling over the simple approach in which each agent samples the random
variables independently. We also show that collaborative sampling can
be used to implement a new, distributed version of the consensus algo-
rithm, which is a well-known algorithm for centralized, online stochastic
optimization in which the solution chosen is the one that is optimal in
most cases, rather than the one that maximizes the expected utility.

1 Introduction

Many optimization problems in the real world today are intrinsically distributed,
and involve multiple parties having each their own coupled subproblems, and
willing to collaborate to produce a solution to an overall problem. Examples
include monitoring moving objects using sensor networks, search-and-rescue sce-
narios performed by autonomous robots, or supply chain optimization.

In yet another domain of application, consider a Truck Task Coordination
Problem [1], in which a nation-wide company receives pickup-and-delivery re-
quests from customers. Because of the large geographical extent of its operations,
the company uses the truck fleets of franchised subcontractors scattered around
the country, and faces the problem of assigning its packages to these trucks. Each
truck has a dedicated pickup area; it only picks up packages that are waiting in
this area, but can deliver them beyond if necessary. This problem is essentially
distributed and does not lend itself well to centralized problem solving, because

2 Thomas Léauté and Boi Faltings

subcontractors have constraints and preferences that they consider trade secrets
and do not want to share. On the other hand, because they work under the
same franchise, they are willing to collaborate to maximize the total value of the
satisfied requests, minus the cost of pickup and delivery.

Distributed Constraint Optimization (DCOP) is a powerful framework that
has emerged as one that is able to model such multi-agent optimization prob-
lems. Distributed algorithms have been proposed to solve DCOPs, including
SynchBB [2], ADOPT [3], OptAPO [4], DPOP [5], AFB [6], and NCBB [7].
The focus in the research so far has been mainly on designing fast, complete
algorithms. Very little work however has been done on algorithms capable of
handling uncertainty in the problem data, and none of the aforementioned algo-
rithms addresses this issue.

The relevance to real-life problems of handling uncertainty can be illustrated
by revisiting the previous package delivery problem: perfect information about
all packages might not be known at the time an assignment of packages to trucks
must be computed, as not all packages to be delivered in a given day might be
known in advance. Fortunately, historical data and statistics about customer
orders are available, and can be used to produce predictions of future packages
in the form of probability distributions.

Previous work has tried to extend the DCOP framework to include some
form of uncertainty modeled by probability distributions. [8] proposed an exten-
sion called DCOP with Utility Distributions, in which each constraint’s utilities
are no longer simple real values, but probabilistic distributions of real values.
Unfortunately, this formalism assumes that all utility distributions are indepen-
dent, and fails to model the fact that two agents’ utilities can depend on the
same source of uncertainty. Furthermore, to our knowledge and at the time of
this writing, no algorithm has been proposed that solves such extended DCOPs.

We propose to extend the DCOP formalism to that of DCOP under Stochas-
tic Uncertainty (StochDCOP), which is a generalization of the formalism in [8].
In this new framework, random variables with probability distributions are used
to model sources of uncertainty. The goal of the problem becomes to compute
an assignment to the decision variables that maximizes the expected utility.

One of the challenges in reasoning about uncertainty is that the probabil-
ity distributions for the random variables might not be known directly, or their
full forms might be known but too complex to use in the optimization process.
In such cases, it is frequent to resort to sampling in order to obtain simple,
approximate representations of the probability distributions in the form of sam-
ple realizations of the random variables. While sampling is a commonly used
approach in centralized optimization, its implementation in the context of dis-
tributed optimization is however not necessarily trivial. For instance, it is intu-
itive to expect a lower solution quality if all agents independently sample shared
random variables, resulting in the agents reasoning about inconsistent samples.

To address this, we introduce a distributed procedure called collaborative
sampling, following which all agents concerned with a given random variable
agree on a common sample set for its probability distribution. This procedure

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 3

partially centralizes the sampling, while taking advantage of the problem struc-
ture and the local, limited influence of each random variable on the overall prob-
lem to retain as much parallelism as possible. We use this approach to produce
new versions of the DPOP algorithm that are able to solve StochDCOPs, and
we evaluate the impact of collaborative sampling against the approach where all
agents use inconsistent samples.

We also show how collaborative sampling can be used to implement a new,
distributed version of the consensus algorithm for (centralized) Online Stochastic
Optimization [9]. In contrast to the traditional expectation approach, this algo-
rithm chooses the solution that is optimal for the largest number of samples,
rather than the one that optimizes the sampled expected utility. The consen-
sus approach has been shown to perform better on online, centralized problems
when the number of samples is limited by time constraints.

The rest of the paper is organized as follows. Section 2.1 recalls the DCOP
formalism and the DPOP algorithm, and illustrates them on the class of Truck
Task Coordination Problems. Section 3 then introduces the new StochDCOP
formalism. Section 4 presents our novel collaborative sampling approach, and a
set of new StochDCOP algorithms based on it, which are evaluated in Section 5.
Section 6 then concludes.

2 DCOP and the Original DPOP Algorithm

This section first recalls the DCOP formalism, and then briefly presents the
original DPOP algorithm.

2.1 DCOP Formalism

A discrete Distributed Constraint Optimization Problem (DCOP) is formally
defined as a tuple < A,X ,D, C >:

– A = {a1, . . . , a|A|} is a set of agents;
– X = {x1, . . . , xn} is a set of decision variables, each decision variable xi

being owned by an agent a(xi);
– D = {D1, . . . , Dn} is a set of finite domains for the decision variables such

that xi takes values in Di;
– C = {c1, . . . , cm} is a set of soft constraints, where each constraint is a

function ci : Di1 × . . . × Dil
→ R that assigns a utility ci(xi1 , . . . , xil

) to
combinations of assignments to a subset of decision variables.

A solution to the DCOP is an assignment to all decision variables that max-
imizes the sum of all utilities

∑
i ci. Since all constraints are soft constraints

defined as utility functions, they will interchangeably be denoted by the letter u.
Hard constraints can be modeled as soft constraints using virtually infinite neg-
ative utilities. In the following, it is assumed that any constraint/utility function
is known to all variables in its scope. It is also assumed for simplicity and without
loss of generality that each agent only owns a single variable, and Agent a(x)
will sometimes be referred to as “Agent x.”

4 Thomas Léauté and Boi Faltings

2.2 The Truck Task Coordination Problem

For the sake of simplicity, assume that each company owns only one truck. A
simple instance of this problem is illustrated in Fig. 1. Notice that this problem
consists of two subproblems: 1) given a set of packages to be picked up and de-
livered by a specific truck, compute the cost of the optimal pickup and delivery
plan; and 2) given these costs, collaboratively compute an optimal allocation of
packages to trucks. The first subproblem is internal to each truck and indepen-
dent of any other truck’s subproblem; it hence does not require a collaborative
solution process. In the rest of this paper, we abstract away this subproblem
by assuming that all costs are known beforehand, and we focus on solving the
second optimal allocation problem, using a distributed optimization algorithm.

Following the DCOP formalism from Section 2.1, we model the problem as
follows. Each truck is assigned a decision variable, whose domain is the set of all
subsets of packages that are located in its pickup area. For instance, in Fig. 1,
the domain of Truck w’s decision variable (hereafter simply denoted w) is the
powerset P(PD ∪ PE).

The constraints in the DCOP are twofold:

– One unary (soft) constraint for each truck variable, which defines the value
of each assignment of packages to that truck, as the sum of the values of
all packages in the assigment minus the cost of the corresponding optimal
pickup and delivery plan.

– One binary (hard) constraint for each pair of trucks whose areas overlap,
which imposes that packages located in the intersection of the two pickup
areas can only be assigned to at most one of the two trucks. For instance,
in Fig. 1, there exists such a constraint between decision variables w and y,
imposing that none of the packages in PE can be delivered by both trucks.

2.3 Original DPOP Algorithm

The DPOP algorithm [5] is an instance of the general bucket elimination scheme
from [10], which is adapted for the distributed case. DPOP has 3 phases:

Phase 1 – DFS Pseudotree Generation: Variables are first arranged following a
pseudotree by running a leader election algorithm in order to choose a root vari-
able, followed by a DFS traversal of the constraint graph. As a result, each node
consistently labels its neighbours as parent/child or pseudoparent/pseudochild.
The DFS pseudotree serves as a communication structure for the other two
phases of the algorithm: UTIL messages (Phase 2) travel bottom-up, and VALUE
messages (Phase 3) travel top-down, only via tree-edges.

Phase 2 – UTIL Propagation: The agents (starting from the leaves) send UTIL
messages to their parents, containing the optimal, aggregated utility of their
subtrees, as a function of other variables higher up. To do so, each agent joins
(i.e. sums) received UTIL messages with its own utility function. It then projects
out its variable by optimizing over it. This process is illustrated in Fig. 2a.

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 5

��
��

��
����

��

��
����

��
Truck z

Truck x

Truck y

Truck w

PB , r

PD

PC

PEPA

Fig. 1. A Truck Task Coordination problem. Circles are cities, with lists of packages PX

waiting for pickup, and rectangles are pickup areas for the various trucks.

� O

6

w

x

zy

u∗z(x)u∗y(x, w)

u∗x,y,z(w)

? ?

-

-

z∗(x)y∗(x, w)

x∗(w)

w∗

6 6

�

�

uy(x, y, w) uz(x, z)

ux(w, x)

uw(w)

O

6

w

x, r

z, r

ũ∗z(x)

ũ∗x,y,z(w)

z̃∗(x)

-

-

x̃∗(w)

w̃∗

a) b)

?6

Er[uz(x, z, r)]

� Er[ux(w, x, r)]

O

6

w

x, r

z

u∗z(x, r)

u∗x,y,z(w)

z∗(x)

-

-

x∗(w)

w∗

?6

uz(x, z, r)

� ux(w, x, r)

c)

Fig. 2. A possible DFS tree for the truck variables corresponding to Fig. 1: a) for
DPOP; b) for the Simple Algorithm and Local-E[DPOP] (which only differ by the
fact that the latter has x and z use the same sample set, chosen by x = lca(r), to
approximate Er [·]), showing only differences with a) for clarity; and c) for Global-
E[DPOP], showing only differences with b). The presence of an r beside a decision
variable indicates that the variable is responsible for projecting out random variable r.

6 Thomas Léauté and Boi Faltings

Phase 3 – VALUE Propagation: This top-down propagation is initiated by the
root, when Phase 2 has finished. Each node determines its optimal value from
the computation in Phase 2 and the VALUE message received from its parent.
It then sends this value to its children via VALUE messages.

3 DCOP under Stochastic Uncertainty

The following section first introduces an extension of the DCOP formalism from
Section 2.1 that is able to model stochastic uncertainty. Section 3.2 then provides
an illustrative, stochastic version of the example in Section 2.2.

3.1 StochDCOP Formalism

A Distributed Constraint Optimization Problem under Stochastic Uncertainty
(StochDCOP) is defined as a tuple < A,X ,D,R,∆,P, C >:

– A, X and D are defined as in Section 2.1;
– R = {r1, . . . , rq} is a set of random variables;
– ∆ = {∆1, . . . ,∆q} is a set of (not necessarily finite) domains for the random

variables such that ri takes values in ∆i;
– P = {π1, . . . , πq} is a set of probability distributions, where each distribu-

tion πi : ∆i → R defines the probability law for random variable ri;
– C = {c1, . . . , cm} is a set of soft constraints over mixed subsets of decision and

random variables. Any such constraint is known to all agents controlling a
decision variable in its scope, and is assumed to involve at least one decision
variable (constraints involving only random variables can be modeled as
probability distributions).

A solution is an assignment of values to all decision variables that maximizes
the expected sum of all utilities ER [

∑
i ci]. Notice that random variables are not

initially assigned to any specific agent; this is because random variables model
uncertainty in the agents’ common environment.

This definition assumes without loss of generality that all random variables
are independently distributed (but not necessarily from the same distribution),
i.e. all probability distributions are unary. A StochDCOP involving joint proba-
bility distributions can be reduced to match the definition by combining depen-
dent random variables into one. Notice also that probability distributions do not
depend on decision variables; in other words, only exogenous uncertainty is con-
sidered. Finally, it is assumed that a sampling procedure for random variable r
is available to each agent constrained with r, and that the agents either have
different sampling procedures, or the procedure is non-deterministic, such that
if two agents independently call their respective procedures, they will produce
two different sets of weighted samples.

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 7

3.2 Stochastic Truck Task Coordination

In the stochastic version of the Truck Task Coordination problem defined in Sec-
tion 2.2, random variables are used to model the possibility for new packages to
be announced. More formally, each random variable models a potential package
to appear in a given city. Its domain contains possible values for the package’s
attributes, such as its destination city and its value. For instance, in Fig. 1, the
random variable r represents a hypothetical package to be picked up in city B.

With respect to the previous DCOP formulation, there is now a new, third
type of constraints in the problem:

– One binary (soft) constraint between any random variable and any truck
variable whose area contains the random variable, defining the value obtained
by the truck if it delivers the corresponding hypothetical package.

4 The E[DPOP] Algorithms for StochDCOP

Recall from Section 3.1 that random variables’ domains may be infinite. In order
to be able to apply standard DCOP techniques, each random variable’s domain
is discretized by sampling the probability distribution of that variable. This
section presents several StochDCOP algorithms that differ in the way sampling
is performed, and how samples are used to choose a solution to the problem.

4.1 Simple Algorithm

A simple approach to solve a StochDCOP problem is for each agent to indepen-
dently sample the random variables it depends on in order to approximate its
local, expected utility, without collaborating with other agents whose utilities
might depend on the same random variables (Table 1). The agents then run
DPOP on the expected utilities, as illustrated in Fig. 2b.

Table 1. Comparison between algorithms based on where they respectively choose
sample sets and project random variables.

sampling
at the leaves at the lcas at the root

p
ro

je
ct

io
n at the leaves

Simple
Local-E[DPOP]

Algorithm

at the lcas Global-E[DPOP]

at the root
Central-
E[DPOP]

The advantage of this approach is that it introduces no additional complexity
compared to DPOP in terms of the number of messages and their sizes. Its main

8 Thomas Léauté and Boi Faltings

drawback however is that, since agents independently sample random variables,
they reason on inconsistent samples, which we show in Section 5 can lead to
a loss in expected solution quality. To address this issue, the following section
shows how agents can collaborate to reason on common samples.

4.2 Collaborative Sampling and Local-E[DPOP]

Designing a distributed algorithm allowing agents to agree on samples for a
random variable r they share a common interest for is not a trivial task. The
challenge is that, in the general case, two agents with a constraint over r might
not be able to communicate directly, because they are not necessarily neigh-
bors in the constraint graph. They might not even know that each other has a
constraint over r and that they need to agree on the same samples for r.

This section introduces a new distributed algorithm called collaborative sam-
pling, following which, for each random variable r, agents independently propose
sample sets for r, and elect one agent among themselves as responsible for com-
bining the proposed sample sets into one. A natural choice for such an agent
could be the root of the DFS; this would however be a poor choice as it would
put a high computational burden on this agent, which would then be a bot-
tleneck responsible for choosing all samples. Furthermore, it would then have
to communicate the samples to all other interested agents, using messages that
would potentially have to traverse the whole DFS to reach their recipients.

We propose to elect, for each random variable r, the lowest common ancestor
lca(r) in the DFS of all variables constrained with r. This choice minimizes the
communication cost, as lca(r) corresponds to the agent that is the closest (in
terms of number of tree edges) to all variables constrained with r. It also has
the advantage of distributing the computational load among the agents.

Detailed Algorithm Algorithm 1 shows how agents compute lcas and agree
on common sets of samples. It proceeds in two phases: during the first, bottom-
up phase, messages containing random variables and proposed sample sets are
propagated up the DFS pseudotree along tree-edges starting from the leaves,
until the root knows the set of all random variables in the problem. During the
second, top-down phase, messages back-propagate down the pseudotree along
tree-edges, after which each agent knows whether it is the lca of some ran-
dom variable(s). Sample sets are also chosen by re-sampling the proposed sets
(line 19), and forwarded down the tree during this second phase.

We refer to the modification of the Simple Algorithm using collaborative
sampling as Local-E[DPOP], because each agent locally computes its expected
utility (Table 1).

Complexity Analysis The first phase in Algorithm 1 generates (n − 1) mes-
sages of sizes O(nqk), where n and q are respectively the numbers of decision
and random variables, and k is the number of samples for each random variable.
In the worst case of a single-branch DFS in which root and leaf are constrained

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 9

Algorithm 1 Collaborative sampling
Each agent a(x) does the following:

1: // Bottom-up phase
2: R0 ← {r ∈ R | x is constrained with r}
3: S0 ← {sample(πr) | r ∈ R0}
4: wait for all {Ri,Si}i=1...t from all children
5: Rx ← ∪i≥0Ri

6: Sx ← ∪i≥0Si

7: send {Rx,Sx} to parent (if any)
8: if Rx = ∅ then
9: execute UTIL phase

10: // Top-down phase
11: S ← ∅ // all known sample sets
12: Rx ← ∪1≤i<j(Ri ∩Rj) ∪R0

13: if a(x) has a parent p then
14: wait for {Rp,Sp} from parent
15: S ← Sp

16: Rx ← Rx ∩Rp

17: for all r ∈ Rx do
18: lca(r)← a(x)
19: Sr ← sample(∪Sr∈SxSr)
20: S ← S ∪ {Sr}
21: for all children i = 1 . . . t such that Ri 6= ∅ do
22: send {(Ri ∩Rp)−Rx, {Sr ∈ S | r ∈ Ri}} to child i
23: execute UTIL phase

with all random variables, the second phase generates (n− 1) messages of sizes
O(qk). Overall, Algorithm 1 therefore only generates a number of messages that
is linear in the number of decision variables, and their sizes are linear in the total
number of proposed samples across all variables.

It has been proven in [5] that DPOP produces a number of messages that is
also linear in the number of decision variables. Its complexity lies in the size of
the UTIL messages: the largest one is space-exponential in the induced width
of the DFS used. The complexity of Algorithm 1 is hence negligible compared
to that of the UTIL phase, and the overall complexity of Local-E[DPOP] is
therefore sensibly the same as that of DPOP.

4.3 The Global-E[DPOP] Algorithm

As mentioned in Section 4.1, the main drawback of the Simple Algorithm is that
it completely ignores the fact that several agents’ utilities can depend on the same
random variable. Local-E[DPOP] provides a partial patch for this, by enforcing
that all agents agree on using the same sample sets. However, agents still do not
collaborate by exchanging information about how their utilities depend on the
random variables.

10 Thomas Léauté and Boi Faltings

The Global-E[DPOP] algorithm is a modification of Local-E[DPOP] that re-
tains information about dependencies on random variables in the UTIL mes-
sages. Each agent x proceeds as follows: when it has received all UTIL mes-
sages from its children u1(x, ·), . . . , un(x, ·), it joins them with its local utility
ux(x, r1, . . . , rm, ·), computes the expected joint utility:

ux,1,...,n(x, ·) = ERx,1,...,n

[
ux(x, r1, . . . , rm, ·) +

∑
i=1...n

ui(x, ·)

]
,

where Rx,1,...,n is the set of random variables in the joint utility, and then projects
out its variable by choosing the assignment to x that maximizes this expected
utility: x∗(·) = arg maxx{ux,1,...,n(x, ·)}. Like in Local-E[DPOP], the chosen as-
signment is therefore independent of any random variable: the agent must make
decisions without knowing the future. Finally, unlike Local-E[DPOP], which
would simply report ũ∗x,1,...,n(·) = maxx{ux,1,...,n(x, ·)}, the agent reports to its
parent the effective utility achieved by its chosen assignment, as a function of
the random variables: u∗x,1,...,n(·) = ux(x∗(·), r1, . . . , rm, ·) +

∑
i=1...n ui(x∗(·), ·).

Information about the dependency on all random variables could be propa-
gated all the way to the root; this approach is referred to as Central-E[DPOP]
in Table 1, and corresponds to centralizing at the root the uncertain part of
the DCOP. However this would result in an uncontrolled explosion in message
sizes. It is hence important to remove all information about any given random
variable r as soon as it is no longer necessary, i.e. no more agents higher in the
DFS depend on r. This condition is given as soon as the messages reach lca(r);
therefore Global-E[DPOP] has lca(r) project out r once and for all by reporting
the expected utility with respect to r, as Local-E[DPOP] would (Table 1).

This algorithm is illustrated in Fig. 2c. Agent z first computes the expected
utility Er [uz(x, z, r)], and infers the optimal assignment to its variable as a
function of x:

z∗(x) = arg max
z
{Er [uz(x, z, r)]}. (1)

It then sends to its parent u∗z(x, r) = uz(x, z∗(x), r). Agent x then joins this with
its local utility ux(w, x, r) and with the utility u∗y(x,w) received from agent y,
to obtain the aggregated utility ux,y,z(w, x, r). It then computes the optimal
assignment to its variable: x∗(w) = arg maxx{Er [ux,y,z(w, x, r)]}. Finally, be-
cause it is lca(r), agent x projects out r by reporting directly u∗x,y,z(w) =
maxx{Er [ux,y,z(w, x, r)]}.

Complexity Analysis Consider the complexity of the UTIL phase in both
algorithms. Local-E[DPOP] produces (n−1) messages, each of size O(dw), where
d is the size of the largest decision variable domain and w is the induced width
of the DFS pseudotree. The UTIL messages sent by Global-E[DPOP] are the
same as Local-E[DPOP], except that they can carry additional random variables,
whose sampled domains are of size k. In the worst case where the root as well
as all leaves are constrained with all q random variables, the size of Global-
E[DPOP]’s largest UTIL message is O(dwkq).

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 11

4.4 Equivalence Result

The three E[DPOP] algorithms presented in the previous sections all share the
common property that all agents performing operations involving any random
variable r use the same sample set for r, chosen by lca(r). This property dif-
ferentiates the E[DPOP] algorithms from the Simple Algorithm, in which each
agent independently chooses its sample sets. As illustrated in Table 1, the only
difference between these three algorithms is where the random variables are pro-
jected out: Local-E[DPOP] projects them at the leaves (i.e. each agent projects
out all known random variables before running the classical DPOP algorithm),
Global-E[DPOP] at the lcas, and Central-E[DPOP] at the root. The following
theorem establishes that the choice of where to project is actually irrelevant, and
that the three algorithms are equivalent, i.e. they produce the same solutions.

Theorem 1. The Local-E[DPOP], Global-E[DPOP] and Central-E[DPOP] al-
gorithms produce the same solutions.

Proof. We only prove that Local-E[DPOP] and Global-E[DPOP] are equivalent;
the proof easily extends to Central-E[DPOP]. Starting from Global-E[DPOP], we
provide a procedure that transforms this algorithm into Local-E[DPOP], without
changing the solution chosen to the StochDCOP. The procedure is iterative on
the random variables, and given a random variable r, recursive on the depth in
the DFS where r is projected out.

Let r be a random variable. Let x be a variable in the DFS that is responsible
for projecting out r (in the base case of Global-E[DPOP], x is necessarily lca(r)).
We now show how the projection of r can be pushed down into x’s child variables
y1, . . . yn, without changing x’s optimal value x∗ nor the utility it reports to
its parent. Let ux(x, r, ·) be x’s local utility function, which actually does not
necessarily depend on r, and let u∗i (x, r, ·) be the utility reported by yi in its
UTIL message to x (also possibly independent of r). Variable x computes and
reports the following optimal aggregated utility:

u∗x(·) = max
x

{
Er

[
ux(x, r, ·) +

∑
i

u∗i (x, r, ·)

]}
(2)

= max
x

{
Er [ux(x, r, ·)] +

∑
i

Er [u∗i (x, r, ·)]

}
, (3)

where (3) follows from the linearity of the operator Er [·]. Furthermore:

Er [u∗i (x, r, ·)] = Er [ui(x, y∗i (x, ·), r, ·)] (4)
= max

yi

{Er [ui(x, yi, r, ·)]} , (5)

where (5) follows from the definition of y∗i (x, ·):

y∗i (x, ·) = arg max
yi

{Er [ui(x, yi, r, ·)]} .

12 Thomas Léauté and Boi Faltings

Therefore, we can modify the current algorithm into one that has each yi project
out r and report v∗i (x, ·) = maxyi {Er [ui(x, yi, r, ·)]}. Notice that this is possible
because x and yi use the same sample set for r, and therefore the same sampled
expectation operator Er [·]. In this modified algorithm, variable x reports:

u∗x(·) = max
x

{
Er [ux(x, r, ·)] +

∑
i

v∗i (x, ·)

}
,

which is the same utility as in (2), and is the one that Local-E[DPOP] would
report. It follows from the same derivation that x also makes the same decision:

x∗(·) = arg max
x

{
Er

[
ux(x, r, ·) +

∑
i

u∗i (x, r, ·)

]}
= . . .

= arg max
x

{
Er [ux(x, r, ·)] +

∑
i

v∗i (x, ·)

}
,

which is also the decision that Local-E[DPOP] would make. Therefore, without
changing the solution to the StochDCOP, we have transformed the initial al-
gorithm in which variable x performs as Global-E[DPOP], into an algorithm in
which it performs as Local-E[DPOP], and the projection of r has been pushed
down into its children in the DFS. We can now recursively apply the same pro-
cedure to each of the children. �

Based on Theorem 1, we refer to Local-E[DPOP] simply as E[DPOP], since
Global-E[DPOP] and Central-E[DPOP] produce the same solutions, but have a
higher computational complexity (as shown in Sections 4.3 and 5.1).

4.5 The Consensus Approach

[9] introduced a new approach for centralized stochastic problems called consen-
sus, which differs from the traditional expectation-based approach. They show
that when the number of samples is limited, for instance by time constraints, it
is better to choose a solution that is the optimal one for the largest number of
samples, rather than one that maximizes the expected utility across samples.

We propose a distributed implementation of the consensus method, which
differs from the previous algorithms in how each agent chooses the optimal as-
signments to its variable. For instance, in the example from Fig. 2c, rather than
computing Eq. (1), agent z now computes:

z∗(x) = arg max
z∗

{∣∣∣{r ∈ Sr|z∗ = arg max
z
{uz(x, z, r)}

}∣∣∣} . (6)

By applying this modification to all previous algorithms, we obtain respec-
tively the consensus-based Simple Algorithm (Cons-SA), Cons-Local-E[DPOP],
Cons-Global-E[DPOP], and Cons-Central-E[DPOP]. It is important to note that
the tree latter algorithms are all different, since Theorem 1 no longer holds: the
proof breaks in particular at Eq. (5). Each consensus-based algorithm has the
same complexity in terms of messages as its expectation-based counterpart.

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 13

5 Experimental Results

All algorithms were implemented inside the new open-source FRODO 2.0 frame-
work for Distributed Constraint Optimization that has recently been released
under the GNU Affero GPL [11]. Random instances of the Truck Task Coordi-
nation Problem were generated using a modified version of the generator used
in [1]. The instances involve 10 trucks and 20 cities, 15 of which on average fall
in the intersection of two truck pickup areas. The trucks have random capacities
of between 1 and 5 units of weight. Nine unit-weight packages are used, three of
which are considered random packages, with fixed destination cities and ran-
dom values. All random variables share the same distribution, which assigns a
probability of 0.33 to packages of value 0 (i.e. no package appears), and uniform
remaining probabilities to 19 other possible values. Values for packages are of the
same order of magnitude as the average cost of delivering them. Each datapoint
corresponds to the median over 114,107 random instances.

5.1 Maximum Message Size

We first evaluate the influence on maximum UTIL message size (in terms of
number of variables) of the choice of the position in the DFS where random
variables are projected out. Recall from Table 1 that Local-E[DPOP] projects
out random variables at the leaves, while Global-E[DPOP] does it at the lcas, and
Central-E[DPOP] (Section 4.3) at the root. Table 2 shows that, while Global-
E[DPOP] generates larger messages than Local-E[DPOP], the gain incurred by
projecting at the lcas rather than at the root is significant.

Table 2. Average maximum dimension of UTIL messages. Recall that the space com-
plexity is exponential in this parameter.

Local-E[DPOP] Global-E[DPOP] Central-E[DPOP]

2.09 2.905 3.735

5.2 Expected Solution Quality

Fig. 3 shows the loss in expected solution quality (ESQ) compared to the clair-
voyant algorithm that knows in advance the realized values of the random vari-
ables. The ESQ of an algorithm is computed by taking its output solution,
computing its utility as a function of the random variables, and then taking the
expectation, using the non-sampled distributions. Similarly, the clairvoyant ESQ
is obtained by computing the optimal solution to the problem as a function of
the random variables, and then taking its exact expectation. A loss in ESQ of 0%
is therefore never attainable by any anticipatory algorithm like the ones in this
paper, which do not know the future and output a single solution independent of

14 Thomas Léauté and Boi Faltings

the random variables. As a means of comparison, the original DPOP algorithm
(ignoring all random variables) was also run on the same problem instances.
DPOP provides the baseline of an approach to solve the Truck Task Coordina-
tion Problem that does not attempt to seize the opportunity of increasing its
utility by reasoning about potential future customer requests.

1 3 5 7 9 11 13 15 17 19 21

16%

18%

20%

22%

24%

26%

28%

30%

32%

Number of samples per random variable

Lo
ss

 in
 E

xp
ec

te
d

So
lu

tio
n

Q
ua

lit
y

DPOP
Cons−SA
Cons−Local−E[DPOP]
Cons−Global−E[DPOP]
Cons−Central−E[DPOP]
SA
E[DPOP]

Fig. 3. Median loss in ESQ, with 95% confidence intervals.

The first observation that should be made is that E[DPOP] always outper-
forms the Simple Algorithm. This demonstrates the superiority of collaborative
sampling, compared to the approach in which agents produce samples indepen-
dently. The same observation can be made for Cons-SA versus Cons-*-E[DPOP].

Second, as pointed out in Section 4.5, we observe that the equivalence result
obtained for the various versions of E[DPOP] do not apply to their consensus-
based counterparts. While Cons-Global-E[DPOP] and Cons-Central-E[DPOP]
do seem to perform empirically the same, Cons-Local-E[DPOP] produces so-
lutions of slightly lower quality when the number of samples is low. The dis-
joint 95% confidence intervals for up to 7 samples per random variable indicate
that this performance loss in Cons-Local-E[DPOP] is statistically significant; for
higher numbers of samples, all three algorithms empirically perform the same.

Finally, Fig. 3 shows that all expectation-based algorithms always outper-
form all consensus-based algorithms. While this might seem to contradict known
results in the centralized case [9], we believe that this is an artifact of the sim-
plifying assumption made in Section 2.2 that all entries in the utility tables are
pre-computed offline. The results in [9] show that, when computing each entry

E[DPOP]: Distributed Constraint Optimization under Stochastic Uncertainty 15

is NP-hard (such as for our Truck Task Coordination Problem), and when this
computation is performed online, the consensus approach requires to compute
fewer of these entries, and can therefore process more samples than the expecta-
tion approach under time constraints, hence producing higher-quality solutions.
Future work will aim to remove this simplifying assumption.

6 Conclusion

This paper introduces a new formalism for DCOP problems under stochastic
uncertainty. The main contribution is the collaborative sampling method, which
underlies the E[DPOP] algorithms we propose to solve such problems, including
distributed implementations of the consensus algorithm. We provide a perfor-
mance analysis that demonstrates the benefit of reasoning about uncertainty,
and that using collaborative sampling produces even higher-quality solutions.

We also compare various methods of reasoning about the sources of uncer-
tainty, and investigate the effects of information sharing between agents on the
tradeoff between the expected solution quality and the complexity in terms of
message sizes. We show in particular that propagating this information only
locally rather than to all agents significantly lowers the complexity, while pro-
ducing solutions of comparable qualities.

References

1. Ottens, B., Faltings, B.: Coordinating agent plans through distributed constraint
optimization. In: MASPLAN’08. (2008)

2. Hirayama, K., Yokoo, M.: Distributed partial constraint satisfaction problem. In:
Proceedings of CP’97. (1997) 222–236

3. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence
161 (2005) 149–180

4. Mailler, R., Lesser, V.R.: Solving distributed constraint optimization problems
using cooperative mediation. In: AAMAS’04. Volume 1. (2004) 438–445

5. Petcu, A., Faltings, B.: DPOP: A Scalable Method for Multiagent Constraint
Optimization. In: IJCAI’05. (2005) 266–271

6. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for dis-
tributed constraints optimization. In: Proceedings of ECAI’06. (2006) 103–107

7. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: AAMAS’06. (2006) 1427—1429

8. Atlas, J., Decker, K.: Task scheduling using constraint optimization with uncer-
tainty. In: Proceedings of CAPS’07. (2007) 25–27

9. Bent, R., Hentenryck, P.V.: The value of consensus in online stochastic scheduling.
In: ICAPS’04. (2004) 219–226

10. Dechter, R.: Constraint Processing. Morgan Kaufmann (May 5 2003)
11. Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework

for distributed constraint optimization. In: Proceedings of the IJCAI’09 DCR
Workshop. (2009) http://liawww.epfl.ch/frodo/.

