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Abstract—Constraint satisfaction has been a very successful
paradigm for solving problems such as resource allocation
and planning. Many of these problems pose themselves in a
context involving multiple agents, and protecting privacy of
information among them is often desirable. Secure multiparty
computation (SMC) provides methods that in principle allow
such computation without leaking any information. However, it
does not consider the issue of keeping agents’ decisions private
from one another. In this paper, we show an algorithm that
uses SMC in distributed computation to satisfy this objective.

Keywords-distributed constraint satisfaction; privacy; secure
multiparty computation; homomorphic encryption.

I. I NTRODUCTION

Constraint satisfaction is a very successful paradigm for
solving problems such as resource allocation and planning.
Often, these problems pose themselves in a setting involving
multiple agents. For example, resources such as airport
landing slots, railway or pipeline capacity, and communi-
cation frequencies are often shared between different users.
Furthermore, manufacturing enterprises are increasinglydis-
tributed and supply chains should be coordinated among
multiple agents. The resulting problems can be modeled as
multi-agent constraint satisfaction problems.

A common way to solve such problems is to combine all
variables and constraints into a single problem that can then
be solved by a central server. When agents do not all belong
to the same organization, a challenge is then to protect the
privacy of the agents’ constraints from the server, who could
leak this often sensitive information. This is the motivation
for secure multiparty computation(SMC). The field started
with the millionaire problem [1]: two parties each have a
secret number and want to compare them without either
party learning the other’s number. This problem has been
generalized tomultiparty computation protocols(MPC),
where participants compute a public function of their private
data without revealing it. Multiparty computation protocols
have been applied to decide the winner of a large commercial
sealed-bid auction without revealing the bids [2].

In principle, multiparty computation can also be applied to
multi-agent constraint satisfaction, where the public function
is a feasible solution to the constraint satisfaction problem.
However, since the function is public, this would mean that
the solution would be revealed to all involved agents. For
example, all agents would learn what access other agents get

to resources, or what the joint plans of other agents are. This
is private information that usually should not be revealed.

Another problem is that the complexity of multiparty com-
putation protocols increases significantly with the function
complexity, and it is difficult to implement such a complex
function as the solution to a constraint satisfaction problem.

A way to enhance the privacy guarantees of multiparty
computation is to distribute the computation among the
agents so that each agent computes its own part of the
solution, and use a multiparty computation protocol that
keeps the inputs from other agents hidden.

We show in this paper how such guarantees can be
obtained using a well-known distributed algorithm for con-
straint satisfaction and optimization,DPOP [3].

This paper is structured as follows. We first present
definitions of multi-agent constraint satisfaction and the
privacy notions that can be associated with such a problem,
as well as a review of earlier work on distributed constraint
satisfaction algorithms and privacy protection. We then
present our protocol, calledP2-DPOP (Privacy-Preserving
DPOP), in three steps. Finally, we consider several open
issues that are relevant to this context.

II. PRELIMINARIES

This section recalls preliminary concepts in the fields of
distributed constraint satisfaction (Sections II-A to II-D) and
secure multiparty computation (Sections II-E and II-F).

A. Distributed Constraint Satisfaction

Definition 1 (DisCSP):A discreteDistributed Constraint
Satisfaction Problem(DisCSP) is a tuple< A,X ,D, C >:

• A = {a1, . . . , a|A|} is a set of agents;
• X = {x1, . . . , xn} is a set of variables. Each variable

xi is controlled by an agenta(xi);
• D = {d1, . . . , dn} is a set of finite variable domains;
• C = {c1, . . . , cm} is a set of constraints, where each

constraintci is a function of scope(xi1 , . . . , xil
), such

that ci : di1 × . . .×dil
→ {true, false} assignstrue

to feasible tuples, andfalse to infeasible ones.

A feasible solution is a complete assignment such that the
conjunction of all constraints

∧
ci∈C ci = true, which is the

case exactly when the assignment satisfies all constraints.
In the following, we assume that all agents know the

numbern of variables in the problem, that the graph formed
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by the constraints is connected (otherwise each sub-problem
can be solved independently), and that agents that control
variables in the same constraint can communicate securely.
We also assume that all constraints are either unary or
binary, which is a common assumption as general constraint
satisfaction problems can be reformulated into this form.
Furthermore, we assume that all agents know an upper
bound Dmax on the sizes of variable domains, that they
add dummy values to their domains to make them exactly
that size, and that they have a local constraint that makes
all these dummy values inconsistent. This is done so that
variables cannot be identified by their domain sizes.

Furthermore, we assume that any constraint is known to
all agents that control one of its variables. If an agent has
a constraint that needs to be kept private, one can create a
private copy of all variables in the constraint that the agent
does not own, and link them with equality constraints to the
original variables controlled by other agents. We illustrate
this method below on a resource allocation example, but
keep in mind that it applies to any DisCSP.

B. DisCSP Example: Resource Allocation

A large class of multi-agent constraint satisfaction prob-
lems where privacy is desired are resource allocation prob-
lems, where a set of resources has to be allocated among
different agents. We show below how to model such prob-
lems as DisCSPs and what the privacy considerations are.

The model uses two sets of variables.ya is controlled by
the agent offering resourcey and takes value1 if it allocates
resourcey to agentA and 0 otherwise.ay is a variable
controlled by agentA and constrained to be equal toya.
Three types of constraints exist on these variables:

1) Each resourcey can be assigned to at most one
agent, so for any variable pair(ya, yb), the pair of
assignments(1, 1) is infeasible.

2) Each agent has private constraints on the feasible
combinations of resource assignments: if agentA

wants at least one of resourcesy andz, thencA(ay =
0, az = 0) is false, andtrue in all other cases.

3) All variablesya anday must have equal values.

Constraints of types 1 and 2 must be kept private to the
corresponding agents, for they would otherwise reveal im-
portant competitive information to competing agents. They
can in fact be seen as constraints internal to the agents that
define them (Figure 1). The only inter-agent constraints are
of type 3. They need to be kept private to the agents that
control the corresponding variables, but do not reveal any
other private information to these agents about each other.

C. Privacy in DisCSP

DisCSP can encode a wide variety of problems and there
are consequently many different types of privacy that could
be important, depending on the application. In this paper,
we assume that all participants honestly follow the protocol.

azay
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Figure 1. Constraint graph for a simple example: agentA wants at least
one of resourcesy andz, respectively controlled by agentsY andZ.

This is a standard assumption for DisCSP, and is motivated
by the fact that any deviation from the protocol could lead to
producing an infeasible solution, which we assume is against
every agent’s interests. Rather than addressing the issue of
adversarial behaviors, the techniques presented in this paper
aim to provide strong guarantees on the leak of information
about any particular agent to other participants. Participants
can collude with each other: in fact, several variables in the
problem might actually be owned by the same agent.

An important limitation on privacy is that the fact that a
certain variable value is part of a consistent solution to the
DisCSP will invariably leak some information. For example,
if two variables belonging to different agents are connected
by an equality constraint, each agent can infer the value
of the other’s variable from the value of its own variable.
Therefore, any privacy guarantee will have to specifically
exclude all information that can be inferred from knowledge
of the final solution. We call such informationsemi-private:

Definition 2: Any information an agent can infer from
the knowledge of the values that its variables take in any
consistent solution is calledsemi-privateinformation.

While excluding semi-private information, we distinguish
four types of privacy guarantees (Definitions 3 to 6).

Definition 3: An algorithm preservesagent privacywhen
no agent learns the identity of the agent controlling any
variable xj that does not share a constraint with another
variablexi controlled by this agent. For example in Figure 1,
agentY cannot discover the identity of agentZ.

Definition 4: An algorithm preservestopology privacyif
no agent learns about the existence of either constraints
or cycles of constraints that do not involve at least one
variable it controls. For example, agentY cannot find out
that agentA has a constraint over another resourcez.

Definition 5: An algorithm preservesconstraint privacy
if an agent does not learn the feasibility or infeasibility of
any particular tuple in a constraint that does not involve any
variable it controls, except for semi-private information. For
example,Y cannot find out thatA wantsy or z.

Definition 6: An algorithm preservesdecision privacyif
no agent can learn the values of any variable that it does
not control in the final solution, except for semi-private
information. For instance,Y cannot discover the outcome
of any decision thatZ makes in the chosen solution.

D. Algorithms for Distributed Constraint Satisfaction

The first algorithm for DisCSP wasasynchronous back-
tracking [4], based on backtrack search. Since that time,
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there have been a variety of search-based algorithms such
asAWC[4], AAS[5], AFC [6], ADOPT [7], andOptAPO[8].
As was pointed out in [9], algorithms based on backtrack
search leak problem information through their solution
times. An alternative paradigm where computation time is
independent of the consistency of particular solutions is
dynamic programming, in particular theDPOPalgorithm [3]
that is the basis for the method in this paper.

Most earlier work on privacy in DisCSP has focussed
on constraint privacy, and addressed the issue of how to
measure the loss of privacy entailed by different algorithms.
Franzin et al. [12] measure privacy loss as the reduction in
entropy of other agents’ preferences. Maheswaran et al. [13]
develop a framework calledvaluations of possible statesthat
measures privacy loss as the degree to which the possible
states of other agents are reduced. Greenstadt [14] uses this
framework to analyze privacy loss of DPOP and ADOPT.

While it is useful tomeasureprivacy loss, in practice it
is important to give guarantees that certain information is
not revealed by an algorithm. Brito [15], [16] has developed
methods to reduce privacy loss in search and in particular
to protect privacy of a constraint from agents involved in it.
Greenstadt [17] proposes theSSDPOPalgorithm that uses
cryptographic secret sharing to eliminate a major source of
privacy loss in DPOP, but does not entirely eliminate it.
The P-DPOP algorithm by Faltingset al. [18] guarantees
partial privacy by obfuscating messages with large random
numbers. However, the algorithm leaks agents’ decisions to
other agents that are involved in common constraints, and
the obfuscation is not cryptographically secure.

The approach we propose in this paper is somewhat
similar to those in [10], [9], [11]. However, these approaches
violate agent and value privacy, as agents can learn the final
decisions of other agents, even including non-neighboring
agents. In our protocol, each agent only discovers a feasible
assignments to its own variable using a separate multiparty
computation, and does not learn the assignments to other
variables (except for semi-private information).

E. Secure Multiparty Computation

Cryptography provides solutions for secure multiparty
computation that can in principle solve constraint satis-
faction problems with total privacy. This field focusses in
particular on interactions between a small number of agents,
such as scheduling a single meeting [19], the millionaire’s
problem of comparing numbers without revealing them [1],
or secure auction protocols [20]. These techniques can in
principle be extended to more complex scenarios such as
constraint satisfaction, but their complexity quickly becomes
unmanageable. For example, [9], [11] use cryptographic
circuits. Other algorithms perform search and protect val-
ues with homomorphic encryption, in particular [10], [21].
However, such search-based algorithms can leak information
through the computation time required to find a solution.

F. Manipulating Cooperatively Encrypted Booleans

For propagating consistency information, we need an
encryption that encodes whether a tuple is consistent, that
can only be read with a secret key, and that allows the
following operations even without the secret key:

• the AND of an encrypted and a cleartext boolean;
• the OR of two encrypted booleans.

A simple scheme for such multiparty computation can be
constructed on the basis ofElGamal encryption[22], which
is a homomorphic public key cryptography system based
on the intractability of the Diffie-Hellman problem [23].
It works as follows. Letp and q be large primes so that
q divides p − 1. Gq denotesZ∗

p ’s unique multiplicative
subgroup of orderq. All computations are modulop unless
otherwise stated. Letg ∈ Gq be a publicly known element.
An ElGamal key pairconsists of the private keyx ∈ Zq and
the public keyy = gx. Herep, g, y are publicly known and
x is private. A messagem ∈ Gq is encrypted as follows:

E(m) = (α, β) = (myr, gr) (1)

wherer ∈ Zq is an arbitrary random number chosen by the
encrypter. The message is decrypted by computing:

α

βx
=

myr

(gr)x
= m.

An interesting feature of ElGamal encryption is that it
allows to randomizean encrypted value to generate a new
encryption of the same value that has no similarity with the
original value. RandomizingE(m) in Eq. (1) yields

E2(m) = (αyr′

, βgr′

) = (myr+r′

, gr+r′

)

which still decodes tom. This can be used to make it impos-
sible to gather information by merely comparing messages.

We representfalse by 1, andtrue by a valuez 6= 1,
which allows us to compute the AND and OR operations:

• AND operation with a cleartext boolean:

E(m) ∧ false = E(1) E(m) ∧ true = E(m)

• OR operation over two encrypted booleans:

E(m1) ∨ E(m2) = E(m1 ·m2) = (α1 · α2, β1 · β2)

In our algorithm, we use a shared ElGamal key(x, y) that
is generated cooperatively by all agents.

• Distributed Key Generation: The ElGamal key pairs
(xi, yi) of n nodes can be combined in the following
fashion to obtain the shared key pair(x, y):

x = Σn
i=1xi y = Πn

i=1yi

• Distributed Decryption: If each node publishes its de-
cryption shareβxi , the messagem can be decrypted:

α

Πn
i=1

βxi

=
α

βx
= m
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Procedure: CONSISTENCYPROP(received matrixm(·))
Require: local feasibility matrixmx(x, ·)

1: Agree on codenames forx with each neighbor
2: m′

x(x, ·)← APPLYCODENAMES(mx(x, ·))
3: m(x, ·)← m(·) ∧m′

x(x, ·)
4: if x is not the root variablethen
5: if the valuex0 of x has already been decidedthen
6: m(·)← m(x = x0, ·)
7: else
8: m(·)←

∨
x m(x, ·)

9: m(·)← E(m(·))
10: self.parent.TOPREVIOUS(self,

CONSISTENCYPROP(m(·)))
11: else
12: x0 ← FEASIBLEVALUE(m(x, ·), 1, |dx|)
13: Add local constraintx = x0

14: self.index← 0

Figure 2. Finding a feasible value for the first variable in the ordering.

III. OVERALL P2-DPOP ALGORITHM

The P2-DPOP algorithm proceeds as follows.

1) The algorithm does not assume that any pair of two
agents can communicate directly, which would be a
breach of agent privacy. Instead, it only assumes that
an agent can communicate directly with its neighbors,
i.e. agents with which it shares constraints. However,
the algorithm requires that agents be capable of send-
ing messages to non-neighboring agents; it is therefore
necessary to first establish a propercommunication
structurethat routes messages to their final recipients.

2) While establishing this communication structure, the
agents also construct alinear orderingof all variables,
in which the first variable is called theroot. Agents
also decide on a common ElGamal key for encryption
and cooperative decryption of messages.

3) The agents then repeatedly permute the ordering (and
the communication structure) so that each variable
becomes the root in turn. At each iteration, a feasible
assignment is computed for the root variable, using
distributed, secure multiparty computation.

The following sections describe the algorithm in more
details. To motivate the requirements for the communication
structure, Section IV first describes the distributed proce-
dure to compute a feasible assignment for the current root
variable. Section V then presents how the communication
structure is obtained and used to route messages, and how
the variable ordering is chosen. The permutation of the
ordering to compute a feasible assignment to all variables in
turn is explained in Section VI. For simplicity, we will refer
to each variable as a virtual agent that exchanges messages
with other variables.

ay��
��

az��
��

za��
��

ya��
��

- -

:

Figure 3. One possible DFS variable ordering rooted at variable ay.

Table I
AGENT Y ’ S LOCAL FEASIBILITY MATRIX FOR ya = ay .

ay = 0 ay = 1
ya = 0 true false

ya = 1 false true

Table II
MESSAGE SENT BY VARIABLEya TO VARIABLE za

(a) in cleartext
ay = 0 ay = 1
true true

(b) encrypted

[ay = 0]ya
[ay = 1]ya

E1(z) E2(z)

IV. F INDING A FEASIBLE VALUE FOR ONE VARIABLE

This section describes the method used to obtain a feasible
value for just one variable (variableay in our example),
while maintaining all four types of privacy outlined earlier.
The method we present assumes that we have first con-
structed a linear ordering of all variables (Figure 3) and
a communication structure such that each agent can send
messages to the agent controlling the preceeding variable in
the ordering, while preserving agent and topology privacy.
Sending messages to an agent that is not one’s direct
neighbor is taken care of by the method TOPREVIOUS()
that is described in Section V.

The procedure is presented in Figure 2. Like for the other
distributed algorithms in this paper, we write pseudocode in
terms of remote method invocationrather than in terms of
message exchange. Before starting the procedure CONSIS-
TENCYPROP(), each variablex computes itslocal feasibility
matrix mx(x, ·), which is the join of all constraints overx
that involve only variables precedingx in the ordering.
The procedure then iteratively aggregates and propagates
encrypted feasibility matrices, starting from the last variable,
projecting outvariables along the way, until the root variable
obtains a feasibility matrix involving only itself.

A. Consistency Propagation on an Example

Consider the example in Figure 1, in which we want
to compute a feasible assignment to variableay. Assume
the linear variable ordering in Figure 3. The procedure is
initiated by agentY , which projects its variableya out of
its local feasibility matrix (Table I) by row-wise OR of the
entries (line 8). This yields the message in Table II(a).

If it sent this message to variableza, agentY would reveal
agentA’s interest in resourcey. To protect this information,
it encrypts the message using codenames (line 2) and the
encryption scheme from Section II-F (line 9). The resulting
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Table III
JOIN OF MESSAGE INTABLE II( B) WITH AGENT Z ’ S LOCAL MATRIX .

[ay = 0]ya
[ay = 1]ya

za = 0 za = 1 za = 0 za = 1
[az = 0]za

E1(z) E3(1) E2(z) E3(1)
[az = 1]za

E3(1) E1(z) E3(1) E2(z)

Table IV
ENCRYPTED MESSAGE SENT BY VARIABLEza TO VARIABLE az .

[ay = 0]ya
[ay = 1]ya

[az = 0]za
E4(z) E5(z)

[az = 1]za
E6(z) E7(z)

Table V
ENCRYPTED MESSAGE SENT BY VARIABLEaz TO VARIABLE ay .

[ay = 0]ya
[ay = 1]ya

[ay = 0]az
E9(z) E10(z)

[ay = 1]az
E11(z) E12(z)

encrypted message is presented in Table II(b). We use the
notationEi(.) to indicate encryption based on some random
variableri ∈ Zq. The use of two different random numbers
yields two different representations for the twotrue entries
in Table II(a), which renders the receiving agentZ incapable
of inferring that the two entries are equal. We also use the
notation[x = x0]y to denote the use of a codename agreed
upon with variabley, and that onlyx andy can decode.

Upon reception of the message, agentZ joins it with
its local feasibility matrix (which is essentially the same
as in Table I, but for variablesaz and za) using the AND
operator on each pair of entries (line 3). The resulting joint
matrix is presented in Table III. The agent finally generates
its output message (Table IV) by projecting out variableza

(by column-wise OR of the entries, line 8), and randomizing
the entries (line 9) to hide the equality of some of the entries.

Variable az then joins the received message with its
local feasibility matrix corresponding toay + az ≥ 1
(line 3), projects itself out (line 8), and randomizes the
entries (line 9), to obtain the message in Table V that it sends
to variableay. Finally, a feasible value foray is extracted
from the message (line 12) using the dichotomy algorithm
in Figure 4. This algorithm performs repeated collaborative
decryptions of consistency values using the DECRYPT()
function, which circulates the cyphertext through all agents
in the ordering using repeated calls to TOPREVIOUS(), each
agenti raising theβ to the power of its secret keyxi.

B. Privacy in Consistency Propagation

This section argues that the consistency propagation pro-
tocol used to compute a feasible value for the root variable
preserves the four types of privacy defined in Section II-C.
Formal proofs are beyond the scope of this paper; we only
provide intuitions, first for constraint and decision privacy,

Procedure: FEASIBLEVALUE(m(x = x1 . . . xd), l, u)
1: if l = u then
2: if DECRYPT(m(xl)) = true then return xl

3: else return null
4: else if DECRYPT(

∨
i=l...⌊ l+u

2
⌋ m(xi)) = true then

5: return FEASIBLEVALUE(m(x), l, ⌊ l+u
2
⌋)

6: else
7: return FEASIBLEVALUE(m(x), ⌈ l+u

2
⌉, u)

Figure 4. Procedure to find a feasible value in the root’s messagem(x).

and then for agent and topology privacy. We also propose a
variant of the algorithm that sacrifices some topology privacy
to produce smaller messages. Finally, we briefly discuss the
algorithm’s resistance to collusion.

1) Constraint and Decision Privacy:We claim the con-
sistency propagation method maintains constraint privacy:
consistency values cannot be learned without cooperative de-
cryption, and the propagation looks the same independently
of the constraints. The root variable only finds out which of
its values are consistent, which is semi-private information
since it can be inferred from a solution. Furthermore, it
does not violate decision privacy since only the first agent
computes its value and does not reveal it to others.

2) Agent and Topology Privacy:Observe first that if the
constraint graph consists of a single branch (as in Figure 1),
and the ordering is such that any two consecutive variables
are neighbors in the constraint graph, for instance the
ordering(ya, ay, az, za), then agents only learn about their
direct neighbors and so both agent and topology privacy are
also guaranteed during the consistency propagation phase.

However, privacy problems arise frombackedgesin the
linear ordering, such as the one between variablesay andya

in Figure 3. The leaf of the backedge then needs to transmit
to its predecessor in the ordering a message that refers to
another agent elsewhere in the constraint graph (namely, the
root of the backedge). For instance, agentY needs to send
the message in Table II(a) to agentZ, containing references
to A that Y would want to hide fromZ.

This is achieved by identifying the corresponding vari-
able’s name and values by codenames only known to the
agents at both ends of the backedge. In this way, agents in
between do not know what variable the message refers to,
nor the possible values for this variable. The codenames are
generated by the root of the backedge and communicated
through a secure channel to the agent at the other end. If a
variable is the root of several backedges, it communicates
different codenames to each corresponding agent; the ratio-
nale for this is given in the following paragraph. Agents also
pad their domains to a maximum size so that they cannot
be identified by their variable domain sizes.

3) Complexity vs. Privacy Tradeoff:The message in
Table V contains two dimensions referring to the same
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variable ay, encoded with two different codenames. In a
slight variant of the protocol,ay could have communicated
the same codename toya and az. Variableaz would have
then been able to merge the two dimensions into a one-
dimensional message. More generally, communicating the
same codename to all neighbors would reduce the maximum
number of dimensions in a message from a value equal to
the largest number of backedges over any given variable,
to a value equal to theinduced widthof the ordering. This
would however sacrifice topology privacy:az would learn
that another variable has a constraint withay, and could
hence discover a cycle without being part of it.

4) Collusion Resistance:In the consistency propagation
procedure, only the root is allowed to initiate cooperative
decryptions of the entries in the feasibility matrix it receives.
However, if it colluded with another agent, it could use its
decryption power to decrypt the matrix received by this other
agent. To prevent this, the algorithm only allows the root to
initiate⌈log2 Dmax⌉ cooperative decryptions, whereDmax is
the size of the variable domains. This is exactly the number
of decryptions the root needs to find a feasible value for its
variable (Figure 4).

V. A NONYMOUSLY ESTABLISHING COMMUNICATION

The procedure previously described assumes that there is
a linear ordering of variables and any agent is able to com-
municate with the agent controlling the preceding variable
in the ordering. This section describes the algorithms that
construct such a structure, based on DFS trees.

Figure 5 shows the procedure INITIALIZE ORDER() that
constructs an initial order and communication structure.
Agents first cooperatively elect one variable as the root
using an anonymous leader election protocol (Section V-A).
They then use the procedure DFSORDER() to traverse the
constraint graph in depth-first order from the chosen root
to generate a DFS ordering of the variables. Each variable
stores this ordering in the form of a vector that is encrypted
with its ElGamal key, and that is later used to select each
variable in turn as the root of the ordering (Section VI).

A. Anonymous Leader Election

The problem of leader election has been widely studied in
the literature. Provided each variable has a unique identifier,
a simple procedure is to apply a function (such as raising to a
power in a finite field) to the identifier, and then distributedly
select the variable with the largest transformed identifier.
A distributed algorithm that only requires knowledge of an
upper bound on the number of variables is described in [18].

B. Anonymous DFS Ordering

Variables are ordered in a linear sequence according to
their position in a DFS traversal of the constraint graph,
starting from the root, using the function DFSORDER().
Each variablex records:

Procedure: INITIALIZE ORDER()
Require: total number of variablesn

1: self.key← new ElGamal key
2: self.order← [E(1), . . . , E(1)] n times
3: self.shift← random integer in[1, n]
4: self.visited← false
5: self.index← 0
6: if ELECTLEADER() = true then
7: DFSORDER(self, 1)
8: else
9: wait until self.index > 0

10: self.order[self.index]← E(z) with z 6= 1

Procedure: DFSORDER(parent, index)
1: if self.visited = true then
2: return index− 1
3: self.parent← parent

4: self.index← index

5: self.pp← ∅
6: self.children← ∅
7: self.visited← true
8: openList← all neighboring variables exceptparent

9: while openList 6= ∅ do
10: neighbor← POP(openList)
11: i← neighbor.DFSORDER(self, index + 1)
12: if i = index then
13: self.pp← self.pp∪ {neighbor}
14: else
15: self.children← self.children∪ {neighbor}
16: index← i

17: return index

Figure 5. Algorithms used to construct the communication structure and
the variable ordering.

• its index in the ordering;
• its parent: the variable it was reached from;
• its children: the variables whose parent isx;
• its pseudoparentspp: the variables that precedex in the

ordering and that are linked tox through a constraint;
we call such constraints with pseudoparentsbackedges.

The resulting structure enables a variable to send a
message to its predecessor in the ordering, even if it does
not know its identity. This is performed by the proce-
dure TOPREVIOUS() (Figure 6), which routes the message
through the DFS tree back to the variable that was visited
just before the sender variable.

C. Building the Communication Structure on an Example

Each variable runs INITIALIZE ORDER() (Figure 5), fol-
lowing which it initially sets itself tounvisited(line 4). It
then calls ELECTLEADER() (line 6), and the variable that
discovers itself as the leader (in the example in Figure 3, it
is variableay) triggers the DFS traversal of the constraint
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Procedure: TOPREVIOUS(caller, procedure)
1: if caller = first(self.children) then
2: invoke self.procedure

3: else
4: child← last child inself.children beforecaller

5: child.TOLASTLEAF(procedure)

Procedure: TOLASTLEAF(procedure)
1: if self.children = ∅ then
2: invoke self.procedure

3: else
4: last(self.children).TOLASTLEAF(procedure)

Figure 6. Algorithms to call a procedure on the previous variable.

graph (line 7). Variableay first sets its index in the vector
self.order to 1 (procedure DFSORDER(), line 4), and then
sets itself tovisited (line 7). Then, it recursively calls the
procedure DFSORDER() on each of its neighbors (line 11),
starting with variableaz. Variableaz sets its parent toay

(line 3) and its index to2, and recursively calls the procedure
on its only remainingopenneighborza, which sets its parent
to az and its index to3.

Sinceza has no more open neighbors (line 9), the control
returns toaz, which learns the indexi = 3 of the last visited
variable (line 11). Had this index been equal to its own index
(line 12), this would have meant that the current variable
neighbor = za had already been visited (line 2), andaz

would have concluded thatza is a pseudo-parent (line 13).
Instead, its marks it as its child (line 15). The control then
returns toay, which marksaz as its child and moves on to
its next open neighborya, and repeats the procedure.

Finally, all variables set toE(z) the element in the vector
self.order corresponding to their index (see procedure
INITIALIZE ORDER(), line 10). As a result, each variable
has an elementE(z) in a different place in its vector
self.order, and, if they decoded the first entry of this vec-
tor, only the root variable would obtaintrue. This property
will be used later to re-root the ordering (Section VI).

D. Communication along the DFS Structure on an Example

Let us now illustrate how the communication structure
is used in the procedure CONSISTENCYPROP() (Figure 2)
to recursively pass the control to the previous variable in
the ordering. In order to pass the control to its previous
variable,ya calls the procedure TOPREVIOUS() (Figure 6)
on its parentay. Sinceya is not ay ’s first child (line 1),ya

instructs its previous childaz (line 4) to transfer the control
to the last leaf in its subtree (line 5), which is variableza.
When it is za’s turn to transfer the control to its previous
variable, it calls TOPREVIOUS() on its parentaz, which
concludes from the fact thatza is its first child that it can
keep the control. The same happens when passing the control
from az back to the root variableay.

Procedure: P2-DPOP()
Require: total number of variablesn

1: INITIALIZE ORDER()
2: while self.order 6= ∅ do
3: self.visited← false
4: SHIFTORDER(self.order, n)
5: isRoot← DECRYPT(POP(self.order))
6: if isRoot 6= 1 then
7: DFSORDER(self, 1)
8: self.parent.TOPREVIOUS(self,

CONSISTENCYPROP([true])
9: else

10: wait until self.index = 0

Procedure: SHIFTORDER(order, round)
1: if round > 0 then
2: order ← circular shift oforder by self.shift

3: order ← E(order)
4: self.parent.TOPREVIOUS(self,

SHIFTORDER(order, round − 1))
5: else
6: self.order← order

Figure 7. P2-DPOP: Privacy Preserving DPOP.

E. Privacy in DFS Construction and Communication

The procedure to generate the communication structure
satisfies agent privacy: variables only send messages to
neighbors, and these messages do not contain any informa-
tion about other agents in the problem. Topology privacy is
also guaranteed, as agents only learn about constraints or
cycles of constraints that involve variables they control.

Similarly, once the structure has been established, the
communication mechanism does not leak any more privacy,
since variables only send messages to neighbors. In par-
ticular, sending a message to the previous variable can be
performed without knowing its identity, and only requires
forwarding the message to your parent or to a child.

VI. COORDINATED COMPUTATION OF ALL VALUES

The P2-DPOP algorithm is described in Figure 7. The
agents compute feasible values for their variables in turn
using procedure CONSISTENCYPROP(). Consistency across
iterations is ensured by the fact that once a value has been
decided for a variable, its assignments are restricted to that
value in the following iterations. Note that this does not leak
any information about these values since the computation is
carried out on randomized and encrypted values. This is the
main difference with earlier work [10], [9], [11], [18], in
which the algorithm would leak the chosen feasible value for
a variable to other agents, thereby violating value privacy.

The procedure P2-DPOP() involves the following steps:
the algorithm first initializes, for each variable, a vec-
tor order that identifies a common permutation for all
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Table VI
VALUES OFself.order FOR EACH VARIABLE, IN CLEARTEXT.

shift init iter 1 iter 2 iter 3 iter 4
ya 2 [z, 1, 1, 1] [1, 1, 1, z] [z,1, 1] [1, 1] [1]
ay 1 [1, z, 1, 1] [z, 1, 1, 1] [1, 1, 1] [1, 1] [1]
az 3 [1, 1, z, 1] [1, z, 1, 1] [1, z, 1] [1, z] [z]
za 1 [1, 1, 1, z] [1, 1, z, 1] [1, 1, z] [z, 1] [1]

root Σ = 7 - ay ya za az

agents by having an encryptedz 6= 1 in a different po-
sition for each agent, and1 in all other positions. This is
constructed by all agents in INITIALIZE ORDER() (Figure 5).

The algorithm then loops through alln agents; each
checks if it is the root, i.e. if itsorder vector starts with a
z 6= 1 (lines 5 and 6). If so, it constructs a variable ordering
with its variable x at the root, and computes a feasible
value for x using the procedure CONSISTENCYPROP().
After n iterations, all variables have obtained a value.

At each iteration, the procedure SHIFTORDER() is used to
permute theorder vector so as to choose a new root for the
ordering. This procedure passes the vector through the cycle
of variables, each variable shifting it by its random shift
(line 2) and randomizing the result (line 3). This results in
the vector being shifted by the same amount, independently
of the starting point, and is thus used to shift all vectors in
lockstep. At each iteration, the first element of the vector is
taken off so that the agent cannot become the root twice.

If the problem is infeasible, no agent finds consistent
values for its variables, and on termination all agents know
that there is no consistent solution. It is possible to improve
the algorithm efficiency for this case by directly propagating
this information from the first agent, but in the interest of
clarity we do not consider this simple improvement here.

A. Walk through an Example

Table VI shows the values of theself.order vec-
tors during the course of the algorithm. It assumes that
ELECTLEADER() choseya as the root of the initial com-
munication structure. Before entering the loop on line 2,
the vectors are the ones in the column labelledinit. After
circularly shifting all vectors by each variable’sshift,
variable ay becomes the root during the first iteration.
All vectors are then truncated and shifted again, yielding
variableya as the new root. The procedure is repeated twice,
so thatza andaz can in turn become roots.

B. Privacy Guarantees

The privacy properties of each iteration alone were dis-
cussed in previous sections. When it comes to making each
variable the root in sequence, the algorithm preserves agent
and topology privacy, as the messages exchanged contain
encrypted vectors, and a non-root variable cannot discover
the new root. Randomizing the vectors each time prevents
from making inferences from one iteration to the next.
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Figure 8. Average width versus the number of nodes in the problem.

VII. E XPERIMENTAL EVALUATION

We ran experiments to check the scalability of the algo-
rithm. We used a 32-bit ElGamal encryption with 8 bytes
for every encrypted value (4 bytes forα and for β). For
a problem with width 6, and 8 possible values for each
variable, the memory requirement would be 2 MB in terms
of largest message size. In practice, we could go up to
width 8 (25 variables) with a limit of 128 MB on the
maximum message size.

VIII. O PEN ISSUES

A. Proving Honest Propagation

In secure multiparty computation, agents may be tempted
to not execute the protocol correctly and manipulate the out-
come in their favor. Because of privacy, such manipulation is
hard or impossible to detect. Particular attention is therefore
paid to ensure the non-manipulability of the protocols by
malicious agents. This problem could be addressed for
example by incentive mechanisms such as inM-DPOP [24]
or by verification of consistency in the computation by
comparing and selectively decrypting messages.

B. Using DFS Trees for Propagation

The encryption scheme we use in this paper allows us to
compute the OR of two encrypted booleans, and the AND
of an encrypted boolean with a cleartext boolean, but not the
AND of two encrypted booleans. This makes it necessary to
use a linear variable ordering: an agent would not know how
to join multiple encrypted feasibility matrices received from
multiple successors in a more complex ordering. Using a
pseudo-tree ordering like inP-DPOP[18] would yield better
performance: the largest consistency message would contain
a number of dimensions equal to thetreewidthof the pseudo-
tree, rather than to the induced width of the corresponding
linear ordering. Figure 8 shows how this induced width
increases with the number of variables, for random pseudo-
trees of constant treewith 4. This shows how the use of a
pseudo-tree ordering would yield smaller messages; however
it would require a fully homomorphic encryption scheme.
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IX. CONCLUSION

Many circumstances require a set of agents to collectively
take decisions in a coordinated way. Constraint satisfaction
is a general and widely used formalism for this purpose.
However, in general it requires agents to give up the privacy
of their constraints and decisions. While secure multiparty
computation addressed the privacy of constraints, it does not
preserve privacy of decisions.

We have shown an algorithm, P2-DPOP, that uses dis-
tributed computation together with a simple secure multi-
party computation protocol to protect both types of privacy.
It is useful for scenarios where agents all have the same
interests, for example to avoid conflicts in their assignments.

We believe that such methods can be made significantly
more powerful by incorporating stronger mechanisms for
multiparty computation. In particular, such methods may
allow verification of honest behavior and thus allow applica-
tion to problems with self-interested agents that might other-
wise manipulate the process. On this basis, it could also be
possible to extend the methods to distributed optimization.
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