2009 International Conference on Computational Science and Engineering

Privacy-Preserving Multi-agent Constraint Satisfaction

Thomas Léauté and Boi Faltings
Ecole Polytechnique &#rale de Lausanne (EPFL)
Artificial Intelligence Laboratory (LIA)
firstname.lastname@epfl.ch

Abstract—Constraint satisfaction has been a very successful to resources, or what the joint plans of other agents are. Thi
paradigm for solving problems such as resource allocation s private information that usually should not be revealed.
and planning. Many of these problems pose themselves in a apother problem is that the complexity of multiparty com-

context involving multiple agents, and protecting privacy of . . S . .
information among them is often desirable. Secure multipaty putation protocols increases significantly with the fuoiati

computation (SMC) provides methods that in principle allow ~ complexity, and it is difficult to implement such a complex
such computation without leaking any information. However it function as the solution to a constraint satisfaction peobl

does not consider the issue of keeping agents’ decisions yate A way to enhance the privacy guarantees of multiparty
from one another. In this paper, we show an algorithm that compytation is to distribute the computation among the
uses SMC in distributed computation to satisfy this objectve. -
agents so that each agent computes its own part of the

Kgywords—distribut_ed constraint sat_isfaction; _privacy; secure golution, and use a multiparty computation protocol that
multiparty computation; homomorphic encryption. keeps the inputs from other agents hidden.

We show in this paper how such guarantees can be
obtained using a well-known distributed algorithm for con-

Constraint satisfaction is a very successful paradigm fostraint satisfaction and optimizatioBPOP [3].
solving problems such as resource allocation and planning. This paper is structured as follows. We first present
Often, these problems pose themselves in a setting inlvindefinitions of multi-agent constraint satisfaction and the
multiple agents. For example, resources such as airpogrivacy notions that can be associated with such a problem,
landing slots, railway or pipeline capacity, and communi-as well as a review of earlier work on distributed constraint
cation frequencies are often shared between differensusersatisfaction algorithms and privacy protection. We then
Furthermore, manufacturing enterprises are increasitigly present our protocol, calleB>-DPOP (Privacy-Preserving
tributed and supply chains should be coordinated amon®POP), in three steps. Finally, we consider several open
multiple agents. The resulting problems can be modeled aissues that are relevant to this context.
multi-agent constraint satisfaction problems

A common way to solve such problems is to combine all
variables and constraints into a single problem that can the This section recalls preliminary concepts in the fields of
be solved by a central server. When agents do not all belongistributed constraint satisfaction (Sections II-A tdJ)-and
to the same organization, a challenge is then to protect theecure multiparty computation (Sections II-E and II-F).
privacy of the agents’ constraints from the server, who @oul
leak this often sensitive information. This is the motiati
for secure multiparty computatiof®8MC). The field started
with the millionaire problem [1]: two parties each have a

|. INTRODUCTION

II. PRELIMINARIES

A. Distributed Constraint Satisfaction

Definition 1 (DisCSP):A discreteDistributed Constraint
Satisfaction ProblenfDisCSP) is a tuple< A, X, D,C >:

secret number and want to compare them without either ¢ A= {a1,...,a4/} is a set of agents;

party learning the other’s number. This problem has been « X = {z1,...,7,} is a set of variables. Each variable
generalized tomultiparty computation protocol§MPC), z; is controlled by an agent(x;);

where participants compute a public function of their pgva ~ « D = {d1,...,d,} is a set of finite variable domains;
data without revealing it. Multiparty computation prott&o ~ » C = {c1,...,cn} is a set of constraints, where each
have been applied to decide the winner of a large commercial ~ constraintc; is a function of scop&x;, , ..., x;), such
sealed-bid auction without revealing the bids [2]. thatc; : d;, x...xd; — {true,false} assignstrue

In principle, multiparty computation can also be appliedto to feasible tuples, anflalse to infeasible ones.
multi-agent constraint satisfaction, where the publiccion A feasible solution is a complete assignment such that the
is a feasible solution to the constraint satisfaction peobl conjunction of all constraintg, . .. ¢; = true, which is the
However, since the function is public, this would mean thatcase exactly when the assignment satisfies all constraints.
the solution would be revealed to all involved agents. For In the following, we assume that all agents know the
example, all agents would learn what access other agents getimbern of variables in the problem, that the graph formed

978-0-7695-3823-5/09 $26.00 © 2009 IEEE 17 @COHE’IEpEuter
socie

DOI 10.1109/CSE.2009.169 ty

by the constraints is connected (otherwise each sub-proble Y P A - Z,
can be solved independently), and that agents that control @ - \%/ > 1 @ i\ Fa)
variables in the same constraint can communicate securely. : ~— e . H

We also assume that all constraints are either unary or o | | |

; inh i ; .+ Bigure 1. Constraint graph for a simple example: agénwants at least
bmfary’ WhICh IS a common assumption as ge_neral C_onStraI@ne of resourceg and z, respectively controlled by ageni$ and 7.
satisfaction problems can be reformulated into this form.

Furthermore, we assume that all agents know an upper

bound Dynax 0N the sizes of variable domains, that they Thjs is a standard assumption for DisCSP, and is motivated
add dummy values to their domains to make them exactlyyy the fact that any deviation from the protocol could lead to
that size, and that they have a local constraint that makegroducing an infeasible solution, which we assume is agains
all these dummy values inconsistent. This is done so thavery agent's interests. Rather than addressing the idsue o
variables cannot be identified by their domain sizes. adversarial behaviors, the techniques presented in tiierpa
Furthermore, we assume that any constraint is known t@im to provide strong guarantees on the leak of information
all agents that control one of its variables. If an agent hagpout any particular agent to other participants. Pagitip
a constraint that needs to be kept private, one can createcn collude with each other: in fact, several variables & th
private copy of all variables in the constraint that the dgenproblem might actually be owned by the same agent.
does not own, and link them with equality constraints to the ap important limitation on privacy is that the fact that a
original variables controlled by other agents. We illu&ra certain variable value is part of a consistent solution ® th
this method below on a resource allocation example, bubiscSP will invariably leak some information. For example,
keep in mind that it applies to any DisCSP. if two variables belonging to different agents are conrcte
by an equality constraint, each agent can infer the value
_ _) _ of the other’s variable from the value of its own variable.
A large class of multi-agent constraint satisfaction prOb‘Therefore, any privacy guarantee will have to specifically

lems where privacy is desired are resource allocation IorObéxclude all information that can be inferred from knowledge

Igms, where a set of resources has to be allocated among the final solution. We call such informaticGemi-private
different agents. We show below how to model such prob-- pefinition 2: Any information an agent can infer from

lems as DisCSPs and what the privacy considerations aréy,o \nowledge of the values that its variables take in any
The model uses two sets of variablgs.is controlled by ¢ gistent solution is callesemi-privateinformation.
the agent offering resourgeand takes valug if it allocates While excluding semi-private information, we distinguish
resourcey to agentA and0 otheryV|se.ay is a variable four types of privacy guarantees (Definitions 3 to 6).
controlled by agentd and constrained to be equal 0. Definition 3: An algorithm preserveagent privacywhen
Three types of constraints exist on these variables: no agent learns the identity of the agent controlling any
1) Each resourcey can be assigned to at most oneyariable z; that does not share a constraint with another
agent, so for any variable paily.,y), the pair of yariablez; controlled by this agent. For example in Figure 1,
assignmentgl, 1) is infeasible. agentY cannot discover the identity of ageft
2) Each agent has private constraints on the feasible Definition 4: An algorithm preservempology privacyif
combinations of resource assignments: if ageht no agent learns about the existence of either constraints

B. DisCSP Example: Resource Allocation

wants at least one of resourcgsindz, thenca(ay = or cycles of constraints that do not involve at least one
0,a. = 0) is false, andtrue in all other cases. variable it controls. For example, ageYit cannot find out
3) All variablesy, anda, must have equal values. that agent4 has a constraint over another resoutce

Constraints of types 1 and 2 must be kept private to the Definition 5: An algorithm preservesonstraint privacy

corresponding agents, for they would otherwise reveal imif an agent does not learn the feasibility or infeasibiliy o

portant competitive information to competing agents. Theyany particular tuple in a constraint that does not involvg an

can in fact be seen as constraints internal to the agents thaariable it controls, except for semi-private informatiéior

define them (Figure 1). The only inter-agent constraints arexample,Y cannot find out thatd wantsy or z.

of type 3. They need to be kept private to the agents that Definition 6: An algorithm preservedecision privacyif

control the corresponding variables, but do not reveal anyo agent can learn the values of any variable that it does

other private information to these agents about each othernot control in the final solution, except for semi-private
. . information. For instanceY” cannot discover the outcome

C. Privacy in DisCSP of any decision thaZ makes in the chosen solution.

DisCSP can encode a wide variety of problems and there) o)))

are consequently many different types of privacy that could?- Algorithms for Distributed Constraint Satisfaction

be important, depending on the application. In this paper, The first algorithm for DisSCSP waasynchronous back-

we assume that all participants honestly follow the protoco tracking [4], based on backtrack search. Since that time,

there have been a variety of search-based algorithms sué¢h Manipulating Cooperatively Encrypted Booleans

asAWC(4], AAS[5], AFC[6], ADOPT[7], andOptAPQO[8]. For propagating consistency information, we need an
As was pointed out in [9], algorithms based on backirackancryption that encodes whether a tuple is consistent, that
search leak problem information through their solutionggp, only be read with a secret key, and that allows the

times. An alternative paradigm where computation time isis|iowing operations even without the secret key:
independent of the consistency of particular solutions is

dynamic programming, in particular tiEPOPalgorithm [3]
that is the basis for the method in this paper.
Most earlier work on privacy in DisCSP has focusse

on constraint privacy, and addressed the issue of how t h hi blic k h based
measure the loss of privacy entailed by different algorghm Is @ homomorphic public key cryptography system base

Franzin et al. [12] measure privacy loss as the reduction Tieh thi |ntra<f:t<';1|b|l|ty Ef the 3'mi'HT”man problem [2h3]'
entropy of other agents’ preferences. Maheswaran et gl. [1 t works as follows. Letp and ¢ be large primes so that

develop a framework callechluations of possible statéisat ¢ divides p — 1. G, denotesZp's unique multiplicative

measures privacy loss as the degree to which the possib?é’bgrOUp of ordeg. All computations are modulp unless

states of other agents are reduced. Greenstadt [14] uses tit1erwise stated. Lej € G, be a publicly known element.

framework to analyze privacy loss of DPOP and ADOPT. An EIGa.maI key pagconsmts of the prlvatg key € Z, and
While it is useful tomeasureprivacy loss, in practice it th? pu_bllc keyy = g°. Herep,g,_y are publicly known and

is important to give guarantees that certain information is” is private. A messagen € Gq is encrypted as follows:

not revealed by an algorithm. Brito [15], [16] has developed E(m) = (o, B) = (my",g") (1)

methods to reduce privacy loss in search and in particular) _

to protect privacy of a constraint from agents involved in it Wherer € Z, is an arbitrary random number chosen by the

Greenstadt [17] proposes t8SDPOPalgorithm that uses €ncrypter. The message is decrypted by computing:

cryptographic secret sharing to eliminate a major source of @ my"”

privacy loss in DPOP, but does not entirely eliminate it. G = (g")* =m

The P-DPOP algorithm by Faltingset al. [18] guarantees

partial privacy by obfuscating messages with large random An interesting .feature of ElGamal encryption is that it
‘ , . allows torandomizean encrypted value to generate a new

numbers. However, the algorithm leaks agents’ decisions t0 . T .
ncryption of the same value that has no similarity with the

other agents that are involved in common constraints, ang"°’ o X .
the obfuscation is not cryptographically secure. original value. Randomizing:(m) in Eq. (1) yields

. The approach we propose in this paper is somewhat E2(m) = (ay” ,Bg") = (my™*", g"*"")
similar to those in [10], [9], [11]. However, these approash) i i o
violate agent and value privacy, as agents can learn the fin¥fhich still decodes ten. This can be used to make it impos-
decisions of other agents, even including non-neighboringiP!€ to gather information by merely comparing messages.
agents. In our protocol, each agent only discovers a feasibl e representalse by 1, andtrue by a valuez # 1,
assignments to its own variable using a separate multipartyfhich allows us to compute the AND and OR operations:
computation, and does not learn the assignments to other « AND operation with a cleartext boolean:

variables (except for semi-private information). E(m) A false = E(1) E(m) A true = E(m)

« the AND of an encrypted and a cleartext boolean;

« the OR of two encrypted booleans.

dA simple scheme for such multiparty computation can be
80nstructed on the basis BfGamal encryptiorj22], which

E. Secure Multiparty Computation

« OR operation over two encrypted booleans:

Cryptography provides solutions for secure multiparty
computation that can in principle solve constraint satis- E(m1) v E(mz) = E(my - mz) = (a1 - az, b1 - 52)
faction problems with total privacy. This field focusses in |n our algorithm, we use a shared ElGamal keyy) that
particular on interactions between a small number of agentss generated cooperatively by all agents.
such as scheduling a single meeting [19], the millionaire’s
problem of comparing humbers without revealing them [1],
or secure auction protocols [20]. These techniques can in
principle be extended to more complex scenarios such as
constraint satisfaction, but their complexity quickly betes =X % y=1I"y
unmanageable. For example, [9], [11] use cryptographic
circuits. Other algorithms perform search and protect val-
ues with homomorphic encryption, in particular [10], [21].
However, such search-based algorithms can leak informatio _* >
through the computation time required to find a solution. I, e fB7

« Distributed Key Generation: The ElGamal key pairs
(z4,y;) of n nodes can be combined in the following
fashion to obtain the shared key péir, y):

« Distributed Decryption: If each node publishes its de-
cryption share3*:, the message: can be decrypted:

Procedure: CONSISTENCYPROP(received matrixm(-))
Require: local feasibility matrixm, (z, -) — —

1: Agree on codenames far with each neighbor

2: m!(x,-) < APPLYCODENAMES(m(x, -
‘r() , (ma(z,)) Figure 3. One possible DFS variable ordering rooted at lokria,, .
3 m(z,) —m(-) Aml(x,-)
4: if x is not the root variablgéhen Table |
5. if the valuexy of x has already been decid#uen AGENTY"S LOCAL FEASIBILITY MATRIX FOR Yo = ay.
6: m(:) — m(z = zo, ")
7. else ay =0 1 ay =1
Yo =0 true false
8: m(-) — \/m m(x,) Yo =1 | false true
o m(-) — E(m(")
10: self.parent. TOPREVIOUS(self, Table Ii
CONSISTENCYPROP(m(+))) MESSAGE SENT BY VARIABLEY, TO VARIABLE zq
11: else _
12: x0 < FEASIBLEVALUE (m(z,-), 1, |d,]|) (a) in cleartext (b) encrypted
13: Add local constraintr = x “zrjeo “grjel [ayE:(gya [“’JE:(;%%
1 2

14: self.index <+ 0
Figure 2. Finding a feasible value for the first variable ie thrdering.

IV. FINDING A FEASIBLE VALUE FOR ONE VARIABLE

I1l. OVERALL P2-DPOP ALGORITHM This section describes the method used to obtain a feasible
value for just one variable (variable, in our example),
The P-DPOP algorithm proceeds as follows. while maintaining all four types of privacy outlined earlie

1) The algorithm does not assume that any pair of tonhe methoq we prese_nt assumes t.hat we have first con-
structed a linear ordering of all variables (Figure 3) and

agents can communicate directly, which would be a communication structure such that each agent can send
breach of agent privacy. Instead, it only assumes thaft 9

an agent can communicate directly with its neighbors,,[mhessac?e_S to thﬁ_lagent controllmg thte prgcteedllng "a“?b'e !
i.e. agents with which it shares constraints. However € ordering, while preserving agent and topology privacy.

the algorithm requires that agents be capable of senos-e.ndlng messages to an agent that is not one's direct

ing messages to non-neighboring agents; it is therefor%'_leIghIoor is taken care of by the methosHREVIOUS()

necessary to first establish a propgmmunication t a_}:[r:s descr:jbed N SeCt'OT \(; Fi 2 Like for the oth
structurethat routes messages to their final recipients. € procedure IS presented In Figure <. LIKe Tor In€ other

2) While establishing this communication structure thedistributed algorithms in t_his paper, we write pseudocmde i
agents also constructiaear orderingof all variables, terms ofremort]e methgdfmvocta t|?mthtir than in diggcss()f
in which the first variable is called theot. Agents message exchange. belore starting the procedanesi.
also decide on a common ElGamal key for encryptionTENCYPROP(), each variable: computes itdocal feasibility
and cooperative decryption of messages matrix m(z, -), which is the join of all constraints over

3) The agents then repeatedly permute the ordering (a at involve only variables preceding in the ordering.

the communication structure) so that each variable he procedurg 'Fhen |tergt|vely aggregates and propagates
encrypted feasibility matrices, starting from the lastahle,

becomes the root in turn. At each iteration, a feasible rojecting outvariables along the way, until the root variable
assignment is computed for the root variable, usingp J 9 g Y

distributed, secure multiparty computation. obtains a feasibility matrix involving only itself.

The following sections describe the algorithm in moreA. Consistency Propagation on an Example
details. To motivate the requirements for the communicatio Consider the example in Figure 1, in which we want
structure, Section IV first describes the distributed proceto compute a feasible assignment to variable Assume
dure to compute a feasible assignment for the current rodhe linear variable ordering in Figure 3. The procedure is
variable. Section V then presents how the communicatiomnitiated by agen”, which projects its variablg, out of
structure is obtained and used to route messages, and hdts local feasibility matrix (Table I) by row-wise OR of the
the variable ordering is chosen. The permutation of theentries (line 8). This yields the message in Table li(a).
ordering to compute a feasible assignment to all varialoles i If it sent this message to variablg, agentY” would reveal
turn is explained in Section VI. For simplicity, we will refe agentA’s interest in resourcg. To protect this information,
to each variable as a virtual agent that exchanges messagésncrypts the message using codenames (line 2) and the
with other variables. encryption scheme from Section II-F (line 9). The resulting

20

Table 1lI

Procedure: FEASIBLEVALUE(m(x =21 ...24),1,u)
JOIN OF MESSAGE INTABLE |I(B) WITH AGENT Z’S LOCAL MATRIX.

1: if [= u then
2: if DECRYPT(m(z;)) = true then return z;

[ay = O]ya [ay = Hya
20=0 | 2a=1| 24=0 | 2z =1 3: else return null
az :?za g}(i) ga(l) gg(i) 53(1) 4: else ifDECRYPT(\/,_; | eu) m(z;)) = true then
az Za d() 1(2) 3() 2(2) I+u
5. return FEASIBLEVALUE(m(x),l, [=5*])
6: else
Table IV

ENCRYPTED MESSAGE SENT BY VARIABLEz, TO VARIABLE a.

ENCRYPTED MESSAGE SENT BY VARIABLEa, TO VARIABLE Ay .

7. return FEASIBLEVALUE(m(z), [%5%],u)

Figure 4. Procedure to find a feasible value in the root's agss(x).

lay =0ly, | [ay =1y,
a, =0 Zq E4(Z) Es (Z)
a, =1 Za Eb(z) E7(Z)
and then for agent and topology privacy. We also propose a
Table V variant of the algorithm that sacrifices some topology myva

to produce smaller messages. Finally, we briefly discuss the
algorithm’s resistance to collusion.

=0 =1 : . . .
=0 [GZ’EQ(Z%“ [aj’gw(:j)y“ 1) Constraint and Decision PrivacyWe claim the con-
ay = 1)a. B (2) Fi2(2) sistency propagation method maintains constraint privacy

consistency values cannot be learned without cooperagive d
cryption, and the propagation looks the same independently

encrypted message is presented in Table 1i(b). We use thof the constraints. The root variable only finds out which of

. o . |?s values are consistent, which is semi-private infororati
notationE;(.) to indicate encryption based on some random . : . : :
. . since it can be inferred from a solution. Furthermore, it
variabler; € Z,. The use of wo different random numbers does not violate decision privacy since only the first agent
yields two different representations for the taoue entries P y y 9

; . o computes its value and does not reveal it to others.
in Table Il(a), which renders the receiving agehincapable ,))
of inferring that the two entries are equal. We also use the 2) Agent and Topology Privacyobserve first that if the

notation[z = o], to denote the use of a codename agreed:onstraint graph consists of a single branch (as in Figure 1)
upon with variagley and that onlyz andy can decode and the ordering is such that any two consecutive variables
Upon reception (’)f the message, agehtjoins it with are neighbors in the constraint graph, for instance the
its local feasibility matrix (which is essentially the same ordering(ya, ay, az, z), then agents only learn about their
as in Table I, but for variables, and z,) using the AND direct neighbors andl so both age_nt and topology privacy are
operator on each pair of entries (line 3). The resultingtjoin also guaranteed during the consistency propagation phase.

matrix is presented in Table IIl. The agent finally generates HOWever, privacy problems arise frotrackedgesn the

its output message (Table V) by projecting out variagje ~linéar ordering, such as the one between variabjesndy,
(by column-wise OR of the entries, line 8), and randomizing" Figure 3. The leaf of the backedge then needs to transmit

the entries (line 9) to hide the equality of some of the estrie t© IS predecessor in the ordering a message that refers to
Variable a. then joins the received message with its another agent elsewhere |n.the constraint graph (namely, th
local feasibility matrix corresponding ta, + a. > 1 root of the bapkedge). For instance, agk’_nt]eeds to send
(line 3), projects itself out (line 8), and randomizes thethe message in Table i(a) tq agent containing references
entries (line 9), to obtain the message in Table V that it send!© 4 thatY” would want to hide fromz. . _
to variablea,. Finally, a feasible value fox, is extracted This is achieved by identifying the corresponding vari-
from the message (line 12) using the dichotomy algorithmble’s name and values by codenames only known to the
in Figure 4. This algorithm performs repeated collabogativ @9ents at both ends of the backedge. In this way, agents in
decryptions of consistency values using thedgypt() Petween do not know what variable the message refers to,
function, which circulates the cyphertext through all agen Nor the possible values for this variable. The codenames are
in the ordering using repeated calls toAREVIOUS(), each generated by the root of the backedge and communicated
agenti raising thes to the power of its secret key;. through a secure channel to the agent at the other end. If a
variable is the root of several backedges, it communicates
B. Privacy in Consistency Propagation different codenames to each corresponding agent; the ratio
This section argues that the consistency propagation praale for this is given in the following paragraph. Agentsals
tocol used to compute a feasible value for the root variablepad their domains to a maximum size so that they cannot
preserves the four types of privacy defined in Section II-Cbe identified by their variable domain sizes.
Formal proofs are beyond the scope of this paper; we only 3) Complexity vs. Privacy TradeoffThe message in
provide intuitions, first for constraint and decision pdya Table V contains two dimensions referring to the same

21

Procedure: INITIALIZE ORDER()

Require: total number of variables

1: self.key < new ElGamal key

2: self.order « [E(1),...,E(1)] n times

variable a,,, encoded with two different codenames. In a
slight variant of the protocok, could have communicated
the same codename g, anda,. Variablea, would have
then been able to merge the two dimensions into a one- : . .
dimensional message. More generally, communicating the® Se1f-shift — random integer i1, n]
same codename to all neighbors would reduce the maX|mum4: selfvisited — false
number of dimensions in a message from a value equal to> S¢1f-index 0
the largest number of backedges over any given varlable,G: if ELECTLEADER() = true then
to a value equal to thanduced widthof the ordering. This DFSORDER(self, 1)
would however sacrifice topology privacy; would learn 8 else . . .
that another variable has a constraint with, and could 1 wait until self.index >0 .
hence discover a cycle without being part of it. 10: self.order(self.index] — E(z) with z # 1
4) Collusion Resistanceln the consistency propagation
procedure, only the root is allowed to initiate cooperative
decryptions of the entries in the feasibility matrix it resess.
However, if it colluded with another agent, it could use its
decryption power to decrypt the matrix received by this othe
agent. To prevent this, the algorithm only allows the root to
initiate [log, Dimax | cOOperative decryptions, wher,,.. is
the size of the variable domains. This is exactly the number ~
of decryptions the root needs to find a feasible value for its
variable (Figure 4).

Procedure: DFSORDER(parent, index)

1: if self.visited = true then

2: return index — 1
: self.parent < parent
: self.index « index
: self.pp« 0

: self.children « 0

: self.visited « true

: openList « all neighboring variables exceptirent
: while openList # () do
V. ANONYMOUSLY ESTABLISHING COMMUNICATION 10: neighbor < POP(openList)
i < neighbor.DFSORDER(self, index + 1)
if i = index then

self.pp « self.pp U {neighbor}

© © N o g ks~ w

The procedure previously described assumes that there Fsl
a linear ordering of variables and any agent is able to com-12:
municate with the agent controlling the preceding variable 13

in the ordering. This section describes the algorithms that14. else 1% child 1f.child ohb
construct such a structure, based on DFS trees. 12 ?ed children — self.childrenU {neighbor}
. TMMaAexr <— 1

Figure 5 shows the procedureitiaLizE ORDER() that
constructs an initial order and communication structure.
Agents first cooperatively elect one variable as the rootEigure 5. Algorithms used to construct the communicationcstire and
using an anonymous leader election protocol (Section V-A)the variable ordering.

They then use the procedure DFSQER() to traverse the

constraint graph in depth-first order from the chosen root

to generate a DFS ordering of the variables. Each variable « its i ndex in the ordering;

stores this ordering in the form of a vector that is encrypted o its par ent : the variable it was reached from;
with its ElGamal key, and that is later used to select each e its chi | dren: the variables whose parent:s

17: return index

variable in turn as the root of the ordering (Section VI). « its pseudoparentsp: the variables that precedsin the
. ordering and that are linked to through a constraint;
A. Anonymous Leader Election we call such constraints with pseudopardraskedges

The problem of leader election has been widely studied in The resulting structure enables a variable to send a
the literature. Provided each variable has a unique identifi message to its predecessor in the ordering, even if it does
a simple procedure is to apply a function (such as raising to aot know its identity. This is performed by the proce-
power in a finite field) to the identifier, and then distribujed dure ToPrREvious() (Figure 6), which routes the message
select the variable with the largest transformed identifierthrough the DFS tree back to the variable that was visited
A distributed algorithm that only requires knowledge of anjust before the sender variable.
upper bound on the number of variables is described in [18].

C. Building the Communication Structure on an Example
B. Anonymous DFS Ordering Each variable runsNITIALIZE ORDER() (Figure 5), fol-

Variables are ordered in a linear sequence according tlowing which it initially sets itself tounvisited(line 4). It
their position in a DFS traversal of the constraint graphthen calls EECTLEADER() (line 6), and the variable that
starting from the root, using the function DF80OER(). discovers itself as the leader (in the example in Figure 3, it
Each variabler records: is variablea,) triggers the DFS traversal of the constraint

22

Procedure: ToOPREVIOUS(caller, procedure) Procedure: P>-DPOP()

1: if caller = first(self.children) then Require: total number of variables
2: invoke self.procedure 1: INITIALIZE ORDER()
3: else 2: while self.order # () do
4: child < last child inself.children beforecaller 3: self.visited « false
5. child. TOLASTLEAF(procedure) 4: SHIFTORDER(self.order,n)
5: isRoot < DECRYPT(POP(self.order))
Procedure: TOLASTLEAF(procedure) 6: if isRoot # 1 then
1: if self.children = () then 7: DFSORDER(self, 1)
2: invoke self.procedure 8: self.parent. TOPREVIOUS(self,
3: else CONSISTENCYPROP([true])
4: last(self.children). TOLASTLEAF(procedure) 9. else
10: wait until self.index =10

Figure 6. Algorithms to call a procedure on the previousalas.

Procedure: SHIFTORDER(order, round)
1: if round > 0 then
. order « circular shift oforder by self.shift
order «— E(order)
self.parent. TOPREVIOUS(self,
SHIFTORDER(order, round — 1))

graph (line 7). Variable:, first sets its index in the vector
self.orderto1 (procedure DFS@DER(), line 4), and then
sets itself tovisited (line 7). Then, it recursively calls the
procedure DFS®DER() on each of its neighbors (line 11),
starting with variablez.. Variablea, sets its parent ta,,
(line 3) and its index t@, and recursively calls the procedure
on its only remainingpenneighborz,, which sets its parent
to a. and its index ta3. Figure 7. B-DPOP: Privacy Preserving DPOP.

Sincez, has no more open neighbors (line 9), the control
returns toa., which learns the indek= 3 of the last visited
variable (line 11). Had this index been equal to its own indexE. Privacy in DFS Construction and Communication
(line 12), this would have meant that the current variable The procedure to generate the communication structure
neighbor = z, had already been visited (line 2), and satisfies agent privacy: variables only send messages to
would have concluded that, is a pseudo-parent (line 13). neighbors, and these messages do not contain any informa-
Instead, its marks it as its child (line 15). The control thention about other agents in the problem. Topology privacy is
returns toa,,, which marksa, as its child and moves on to also guaranteed, as agents only learn about constraints or
its next open neighbay,, and repeats the procedure. cycles of constraints that involve variables they control.

Finally, all variables set td’(z) the element in the vector Similarly, once the structure has been established, the
self.order corresponding to their index (see procedurecommunication mechanism does not leak any more privacy,
INITIALIZE ORDER(), line 10). As a result, each variable since variables only send messages to neighbors. In par-
has an element(z) in a different place in its vector ticular, sending a message to the previous variable can be
self.order, and, if they decoded the first entry of this vec- performed without knowing its identity, and only requires
tor, only the root variable would obtaitrue. This property forwarding the message to your parent or to a child.
will be used later to re-root the ordering (Section VI).

else
self.order < order

o a

VI. COORDINATED COMPUTATION OF ALL VALUES

D. Communication along the DFS Structure on an Example The P-DPOP algorithm is described in Figure 7. The
Let us now illustrate how the communication structureagents compute feasible values for their variables in turn

is used in the procedured®SISTENCYPROR() (Figure 2) using procedure GNSISTENCYPROR(). Consistency across

to recursively pass the control to the previous variable initerations is ensured by the fact that once a value has been

the ordering. In order to pass the control to its previousdecided for a variable, its assignments are restrictedab th

variable,y, calls the procedure GPrRevious() (Figure 6) value in the following iterations. Note that this does natde

on its parent,,. Sincey, is nota,’s first child (line 1),y, any information about these values since the computation is

instructs its previous child, (line 4) to transfer the control carried out on randomized and encrypted values. This is the

to the last leaf in its subtree (line 5), which is variablg main difference with earlier work [10], [9], [11], [18], in

When it is z,'s turn to transfer the control to its previous which the algorithm would leak the chosen feasible value for

variable, it calls DPREVIOUS() on its parenta,, which a variable to other agents, thereby violating value privacy

concludes from the fact that, is its first child that it can The procedure 2DPOP() involves the following steps:
keep the control. The same happens when passing the conttble algorithm first initializes, for each variable, a vec-
from a. back to the root variable,,. tor order that identifies a common permutation for all

23

Table VI

VALUES OF self.order FOR EACH VARIABLE, IN CLEARTEXT. :g []
shift init iter 1 iter 2 | iter 3 | iter 4 8o
Ya 2 %L1, | ILLLA | L1 | L1 1 s BT
ay 1 1,2,1,1] | [2,1,1,1 1,1,1 1,1 1 g 20r
a 3 1,1,2,1 1,2,1,1 1,2,1 1,z z 5r
Za 1 1,1,1,2 1,1,2,1 1,1,z z,1 1 10
[root | X =7] - | ay | %o | za | az | 51
0 Il Il Il Il Il Il Il Il Il
0O 20 40 60 80 100 120 140 160 180 200
Nodes
agents by having an encrypted# 1 in a different po- Figure 8. Average width versus the number of nodes in thelgnob

sition for each agent, antl in all other positions. This is
constructed by all agents imiTIALIZE ORDER() (Figure 5).
The algorithm then loops through all agents; each VII. EXPERIMENTAL EVALUATION
checks if it is the root, i.e. if itor der vector starts with a
z # 1 (lines 5 and 6). If so, it constructs a variable ordering
with its variable x at the root, and computes a feasible
value for z using the procedure @\SISTENCYPROR().
After n iterations, all variables have obtained a value.

We ran experiments to check the scalability of the algo-
rithm. We used a 32-bit EIGamal encryption with 8 bytes
for every encrypted value (4 bytes far and for). For
a problem with width 6, and 8 possible values for each

At each iteration, the procedurei8 TORDER() is used to variable, the memory requirement would be 2 MB in terms

permute ther der vector so as to choose a new root for the ©f 1argest message size. In practice, we could go up to

ordering. This procedure passes the vector through the cyclVidth 8 (25 variables) with a limit of 128 MB on the

of variables, each variable shifting it by its random shift Maximum message size.

(line 2) and randomizing the result (line 3). This results in

the vector being shifted by the same amount, independently VIII. OPENISSUES

of the starting point, and is thus used to shift all vectors inA Proving Honest Propagation

lockstep. At each iteration, the first element of the vectori "~

taken off so that the agent cannot become the root twice. In secure multiparty computation, agents may be tempted
If the problem is infeasible, no agent finds consistentto not execute the protocol correctly and manipulate the out

values for its variables, and on termination all agents knowcome in their favor. Because of privacy, such manipulation i

that there is no consistent solution. It is possible to impro hard or impossible to detect. Particular attention is ttoeee

the algorithm efficiency for this case by directly propaggti paid to ensure the non-manipulability of the protocols by

this information from the first agent, but in the interest of malicious agents. This problem could be addressed for

clarity we do not consider this simple improvement here. example by incentive mechanisms such aMiDPOP [24]

or by verification of consistency in the computation by

A. Walk through an Example comparing and selectively decrypting messages.

Table VI shows the values of theel f. or der vec-
tors during the course of the algorithm. It assumes thapg Using DFS Trees for Propagation
ELECTLEADER() chosey, as the root of the initial com- _ o
munication structure. Before entering the loop on line 2, The encryption scheme we use in this paper allows us to
the vectors are the ones in the column labelleitl After ~ compute the OR of two encrypted booleans, and the AND
circularly shifting all vectors by each variableshi ft, of an encrypted boolean with a cleartext boolean, but not the
variable a, becomes the root during the first iteration. AND of two encrypted booleans. This makes it necessary to

All vectors are then truncated and shifted again, yielding!Se a linear variable ordering: an agent would not know how
variabley, as the new root. The procedure is repeated twicet0 join multiple encrypted feasibility matrices receivedrh

so thatz, anda. can in turn become roots. multiple successors in a more complex ordering. Using a
. pseudo-tree ordering like iR-DPOP[18] would yield better
B. Privacy Guarantees performance: the largest consistency message would contai

The privacy properties of each iteration alone were dis-a number of dimensions equal to ttneewidthof the pseudo-
cussed in previous sections. When it comes to making eactnee, rather than to the induced width of the corresponding
variable the root in sequence, the algorithm preservestagetinear ordering. Figure 8 shows how this induced width
and topology privacy, as the messages exchanged contaimcreases with the number of variables, for random pseudo-
encrypted vectors, and a non-root variable cannot discoverees of constant treewith 4. This shows how the use of a
the new root. Randomizing the vectors each time preventpseudo-tree ordering would yield smaller messages; haweve
from making inferences from one iteration to the next. it would require a fully homomorphic encryption scheme.

24

Many circumstances require a set of agents to collectively

IX. CONCLUSION

take decisions in a coordinated way. Constraint satigfacti
is a general and widely used formalism for this purpose[10]

However, in general it requires agents to give up the privacy

of their constraints and decisions. While secure multipart
computation addressed the privacy of constraints, it doés n [11]
preserve privacy of decisions.

We have shown an algorithm 2POP, that uses dis-
tributed computation together with a simple secure multi-
party computation protocol to protect both types of privacy
It is useful for scenarios where agents all have the same
interests, for example to avoid conflicts in their assigntsien

We believe that such methods can be made significantly

Bl

12]

more powerful by incorporating stronger mechanisms forl13]
multiparty computation. In particular, such methods may
allow verification of honest behavior and thus allow applica
tion to problems with self-interested agents that migheoth

wise manipulate the process. On this basis, it could also bE.4]
possible to extend the methods to distributed optimization

ACKNOWLEDGMENT

(15]

The authors would like to thank Nikhil Garg for his con-
tribution in implementing the algorithm and producing some
experimental results, and Adrian Petcu for his supervision

REFERENCES

16]

(17]

[1] A. C. Yao, “Protocols for secure computations,” fioceed-

(2]

ings of SFCS'821982, pp. 160—164.

P. Bogetoft, D. L. Christensen, |. Damgard, M. Geisler, (18]

T. Jakobsen, M. Krgigaard, J. D. Nielsen, J. B. Nielsen,
K. Nielsen, J. Pagter, M. Schwartzbach, and T. Toft, “Secure
multiparty computation goes live,” Cryptology ePrint Ana,
Report 2008/068, February 2008.

[3] A. Petcu and B. Faltings, “DPOP: A Scalable Method for

(4]

(5]

Multiagent Constraint Optimization,” ifProceedings of the
19th Intl Joint Conf. on Al (IJCAI'05)2005, pp. 266—-271.

M. Yokoo and K. Hirayama, “Algorithms for distributed ne
straint satisfaction: A review,Autonom. Agents and Multi-
agent Sys. (JAAMASYol. 3, no. 2, pp. 185-207, June 2000.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings, “Asyn-
chronous search with aggregations,” Broceedings of the
AAAI and IAAI Conference®000, pp. 917-922.

[6] A.Meisels and R. Zivan, “Asynchronous forward-cheakion

(7]

(8]

DisCSPs,” inProceedings of the DCR’03 Workshd003.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “ADOPT:
Asynchronous distributed constraint optimization withalify
guarantees,Al Journal vol. 161, pp. 149-180, 2005.

R. Mailler and V. R. Lesser, “Solving distributed corastit

optimization problems using cooperative mediation, Piro-
ceedings of AAMAS’Q4/0l. 1, 2004, pp. 438-445.

25

(19]

(20]

(21]

(22]

(23]

M.-C. Silaghi and D. Mitra, “Distributed constraint ssfac-
tion and optimization with privacy enforcement,” Broc. Intl
Conf. on Intelligent Agent Tech. (IAT'Q4004, pp. 531-535.

K. Suzuki and M. Yokoo, “Secure generalized Vickrey -auc
tion using homomorphic encryption,” iaroc. of the Intl Conf.
on Financial Crypto. (FC'03)vol. 2742, 2003, pp. 239-249.

M.-C. Silaghi, B. Faltings, and A. Petcu, “Secure com-
binatorial optimization simulating DFS tree-based vdgab
elimination,” in Proc. 9th Intl Symp. on Al and Matl2006.

M. S. Franzin, E. C. Freuder, F. Rossi, and R. Wallace,
“Multi-agent constraint systems with preferences: Efficig
solution quality, and privacy loss,Computational Intelli-
gence vol. 20, no. 2, pp. 264—286, May 2004.

R. T. Maheswaran, J. P. Pearce, E. Bowring, P. Varakan-
tham, and M. Tambe, “Privacy loss in distributed constraint
reasoning: A quantitative framework for analysis and its
applications,"JAAMAS vol. 13, no. 1, pp. 27-60, 2006.

R. Greenstadt, J. P. Pearce, and M. Tambe, “Analysis of
privacy loss in distributed constraint optimization,”Rmoc. of
the 21st National Conf. on Al (AAAIQ63006, pp. 647—653.

I. Brito and P. Meseguer, “Distributed forward chedkihin
Proceedings of CP’Q3vol. 2833, 2003, pp. 801-806.

——, “Distributed forward checking may lie for privatyin
Proceedings of the CP-DCR’07 Worksh&907.

R. Greenstadt, B. Grosz, and M. D. Smith, “SSDPOP: Using
secret sharing to improve the privacy of DCOP,"Rroceed-
ings of the CP-DCR’07 WorkshpR007.

B. Faltings, T. Léauté, and A. Petcu, “Privacy guaems
through distributed constraint satisfaction,”Rnoc. of the Intl
Conf. on Intelligent Agent Tech. (IATQ&008, pp. 350-358.

T. Herlea, J. Claessens, B. Preneel, G. Neven, F. Rigsard
B. D. Decker, “On securely scheduling a meeting,"Aroc.
Intl Conf. on Information Sec. (SEC’Q12001, pp. 183-198.

F. Brandt, “Fully private auctions in a constant numlmér
rounds,” inProc. of FC'03 vol. 2742, 2003, pp. 223-238.

M. Yokoo, K. Suzuki, and K. Hirayama, “Secure distribdt
constraint satisfaction: Reaching agreement withoutalavg
private information,”Artificial Intelligence vol. 161, no. 1-2,
pp. 229-245, January 2005.

T. Elgamal, “A public key cryptosystem and a signature
scheme based on discrete logarithmMEEE Transactions on
Information Theoryvol. 31, no. 4, pp. 469-472, July 1985.

Y. Tsiounis and M. Yung, “On the security of Elgamal-bds
encryption,” inPKC’98, vol. 1431, 1998, pp. 117-134.

[24] A. Petcu, B. Faltings, and D. C. Parkes, “M-DPOP: Faithf

distributed implementation of efficient social choice prob
lems,” JAIR, vol. 32, pp. 705-755, 2008.

